You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72868
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChavarette, Fábio Roberto-
dc.contributor.authorBalthazar, José Manoel-
dc.contributor.authorDos Reis, Célia Aparecida-
dc.contributor.authorPeruzzi, Nelson José-
dc.date.accessioned2014-05-27T11:26:14Z-
dc.date.accessioned2016-10-25T18:35:53Z-
dc.date.available2014-05-27T11:26:14Z-
dc.date.available2016-10-25T18:35:53Z-
dc.date.issued2011-12-01-
dc.identifierhttp://dx.doi.org/10.1115/DETC2011-47406-
dc.identifier.citationProceedings of the ASME Design Engineering Technical Conference, v. 4, n. PARTS A AND B, p. 1067-1076, 2011.-
dc.identifier.urihttp://hdl.handle.net/11449/72868-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72868-
dc.description.abstractHere, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.en
dc.format.extent1067-1076-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectCartesians-
dc.subjectControl design-
dc.subjectControl methods-
dc.subjectControl torque-
dc.subjectDynamical model-
dc.subjectGoverning equations of motion-
dc.subjectInertial forces-
dc.subjectNonlinear effect-
dc.subjectOscillatory movements-
dc.subjectParametric resonance-
dc.subjectPivot point-
dc.subjectReference frame-
dc.subjectStable fixed points-
dc.subjectState-dependent Riccati equation-
dc.subjectStatic equilibrium state-
dc.subjectVibration absorber-
dc.subjectControl-
dc.subjectDesign-
dc.subjectDynamics-
dc.subjectEnergy transfer-
dc.subjectEquations of motion-
dc.subjectMagnets-
dc.subjectPendulums-
dc.titleState Dependent Riccati Equation (SDRE) control method applied in cancellation of a parametric resonance in a magnetically levitated bodyen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationFaculty of Engineering Universidade Estadual Paulista (UNESP) Department of Mathematics, Avenida Brasil, 56, 15385-000, Ilha Solteira, SP-
dc.description.affiliationDepartment of Statistics, Applied Mathematics and Computation Universidade Estadual Paulista (UNESP), PO Box 178, 13500-230, Rio Claro, SP-
dc.description.affiliationDepartment of Exact Sciences Universidade Estadual Paulista (UNESP), Via de Acesso Prof.Paulo Donato Castellane s/n, 14884-900 Jaboticabal - SP-
dc.description.affiliationUnespFaculty of Engineering Universidade Estadual Paulista (UNESP) Department of Mathematics, Avenida Brasil, 56, 15385-000, Ilha Solteira, SP-
dc.description.affiliationUnespDepartment of Statistics, Applied Mathematics and Computation Universidade Estadual Paulista (UNESP), PO Box 178, 13500-230, Rio Claro, SP-
dc.description.affiliationUnespDepartment of Exact Sciences Universidade Estadual Paulista (UNESP), Via de Acesso Prof.Paulo Donato Castellane s/n, 14884-900 Jaboticabal - SP-
dc.identifier.doi10.1115/DETC2011-47406-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the ASME Design Engineering Technical Conference-
dc.identifier.scopus2-s2.0-84863580424-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.