You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72897
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira Jr., Benvindo-
dc.contributor.authorCossi, Antonio-
dc.contributor.authorMantovani, José Roberto-
dc.date.accessioned2014-05-27T11:26:15Z-
dc.date.accessioned2016-10-25T18:35:57Z-
dc.date.available2014-05-27T11:26:15Z-
dc.date.available2016-10-25T18:35:57Z-
dc.date.issued2011-12-01-
dc.identifierhttp://dx.doi.org/10.2316/P.2011.756-050-
dc.identifier.citationProceedings of the IASTED International Conference on Power and Energy Systems and Applications, PESA 2011, p. 28-35.-
dc.identifier.urihttp://hdl.handle.net/11449/72897-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72897-
dc.description.abstractThe high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.en
dc.format.extent28-35-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectCapacitor Banks-
dc.subjectMultiobjective Genetic Algorithm-
dc.subjectPower Distribution Planning-
dc.subjectVoltage Regulators-
dc.subjectCapacitor bank-
dc.subjectDistribution lines-
dc.subjectDistribution systems-
dc.subjectEnergy quality-
dc.subjectInference process-
dc.subjectLong line-
dc.subjectMulti objective-
dc.subjectMulti-objective genetic algorithm-
dc.subjectNon-dominated sorting genetic algorithms-
dc.subjectNSGA-II-
dc.subjectOptimized allocation-
dc.subjectPower distribution planning-
dc.subjectPower factors-
dc.subjectRadial distribution systems-
dc.subjectSearch spaces-
dc.subjectShort term planning-
dc.subjectSpecialized knowledge-
dc.subjectVoltage variation-
dc.subjectCapacitors-
dc.subjectElectric circuit breakers-
dc.subjectElectric power distribution-
dc.subjectElectric power factor-
dc.subjectFuzzy logic-
dc.subjectGenetic algorithms-
dc.subjectReactive power-
dc.subjectVoltage regulators-
dc.subjectLocal area networks-
dc.titleShort-term planning of electric power distribution networks using multiobjective genetic algorithimen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State University - UNESP, Ilha Solteira-
dc.description.affiliationUnespSão Paulo State University - UNESP, Ilha Solteira-
dc.identifier.doi10.2316/P.2011.756-050-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the IASTED International Conference on Power and Energy Systems and Applications, PESA 2011-
dc.identifier.scopus2-s2.0-84856561397-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.