You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72936
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIeong, Chio-In-
dc.contributor.authorDong, Cheng-
dc.contributor.authorNan, Wenya-
dc.contributor.authorRosa, Agostinho-
dc.contributor.authorGuimarães, Ronaldo-
dc.contributor.authorVai, Mang-I.-
dc.contributor.authorMak, Pui-In-
dc.contributor.authorWan, Feng-
dc.contributor.authorMak, Peng-Un-
dc.date.accessioned2014-05-27T11:26:16Z-
dc.date.accessioned2016-10-25T18:36:02Z-
dc.date.available2014-05-27T11:26:16Z-
dc.date.available2016-10-25T18:36:02Z-
dc.date.issued2011-12-01-
dc.identifierhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6164573-
dc.identifier.citationComputing in Cardiology, v. 38, p. 345-348.-
dc.identifier.issn2325-8861-
dc.identifier.issn2325-887X-
dc.identifier.urihttp://hdl.handle.net/11449/72936-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/72936-
dc.description.abstractThe effect of snoring on the cardiovascular system is not well-known. In this study we analyzed the Heart Rate Variability (HRV) differences between light and heavy snorers. The experiments are done on the full-whole-night polysomnography (PSG) with ECG and audio channels from patient group (heavy snorer) and control group (light snorer), which are gender- and age-paired, totally 30 subjects. A feature Snoring Density (SND) of audio signal as classification criterion and HRV features are computed. Mann-Whitney statistical test and Support Vector Machine (SVM) classification are done to see the correlation. The result of this study shows that snoring has close impact on the HRV features. This result can provide a deeper insight into the physiological understand of snoring. © 2011 CCAL.en
dc.format.extent345-348-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAudio channels-
dc.subjectAudio signal-
dc.subjectClassification criterion-
dc.subjectControl groups-
dc.subjectHeart rate variability-
dc.subjectMann-Whitney-
dc.subjectPolysomnography-
dc.subjectSupport vector machine (SVM)-
dc.subjectCardiology-
dc.subjectHeart-
dc.subjectStatistical tests-
dc.subjectSupport vector machines-
dc.titleA snoring classifier based on heart rate variability analysisen
dc.typeoutro-
dc.contributor.institutionUniversity of Macau-
dc.contributor.institutionTechnical University of Lisbon-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Electrical and Computer Engineering University of Macau-
dc.description.affiliationEvolutionary Systems and Biomedical Engineering Lab. Technical University of Lisbon-
dc.description.affiliationDepartment of Neurology UNESP, Botucatu-
dc.description.affiliationUnespDepartment of Neurology UNESP, Botucatu-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputing in Cardiology-
dc.identifier.scopus2-s2.0-84859963132-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.