Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/73077
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramos, Caio C. O. | - |
dc.contributor.author | Souza, André N. | - |
dc.contributor.author | Nakamura, Rodrigo Y. M. | - |
dc.contributor.author | Papa, João Paulo | - |
dc.date.accessioned | 2014-05-27T11:26:20Z | - |
dc.date.accessioned | 2016-10-25T18:36:20Z | - |
dc.date.available | 2014-05-27T11:26:20Z | - |
dc.date.available | 2016-10-25T18:36:20Z | - |
dc.date.issued | 2011-12-21 | - |
dc.identifier | http://dx.doi.org/10.1109/ISAP.2011.6082217 | - |
dc.identifier.citation | 2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011. | - |
dc.identifier.uri | http://hdl.handle.net/11449/73077 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/73077 | - |
dc.description.abstract | Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE. | en |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Clustering | - |
dc.subject | Non-technical Losses | - |
dc.subject | Optimum-Path Forest | - |
dc.subject | Pattern Recognition | - |
dc.subject | Clustering techniques | - |
dc.subject | Data clustering | - |
dc.subject | Data sets | - |
dc.subject | Electric power company | - |
dc.subject | Non-technical loss | - |
dc.subject | Specific profile | - |
dc.subject | Clustering algorithms | - |
dc.subject | Crime | - |
dc.subject | Data processing | - |
dc.subject | Electric utilities | - |
dc.subject | Industry | - |
dc.subject | Intelligent systems | - |
dc.subject | Pattern recognition | - |
dc.subject | Power transmission | - |
dc.subject | Forestry | - |
dc.subject | Algorithms | - |
dc.subject | Artificial Intelligence | - |
dc.subject | Data Processing | - |
dc.subject | Electric Power Transmission | - |
dc.subject | Electricity | - |
dc.subject | Losses | - |
dc.title | Electrical consumers data clustering through optimum-path forest | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Department of Electrical Engineering University of São Paulo, São Paulo, São Paulo | - |
dc.description.affiliation | Department of Computing UNESP - Univ. Estadual Paulista, Bauru, São Paulo | - |
dc.description.affiliationUnesp | Department of Computing UNESP - Univ. Estadual Paulista, Bauru, São Paulo | - |
dc.identifier.doi | 10.1109/ISAP.2011.6082217 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | 2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011 | - |
dc.identifier.scopus | 2-s2.0-83655211673 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.