Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/73085
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Papa, João Paulo | - |
dc.contributor.author | Gutierrez, Mario E. M. | - |
dc.contributor.author | Nakamura, Rodrigo Y. M. | - |
dc.contributor.author | Papa, Luciene P. | - |
dc.contributor.author | Vicentini, Irene Bastos Franceschini | - |
dc.contributor.author | Vicentini, Carlos Alberto | - |
dc.date.accessioned | 2014-05-27T11:26:20Z | - |
dc.date.accessioned | 2016-10-25T18:36:22Z | - |
dc.date.available | 2014-05-27T11:26:20Z | - |
dc.date.available | 2016-10-25T18:36:22Z | - |
dc.date.issued | 2011-12-26 | - |
dc.identifier | http://dx.doi.org/10.1109/IEMBS.2011.6091259 | - |
dc.identifier.citation | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 5084-5087. | - |
dc.identifier.issn | 1557-170X | - |
dc.identifier.uri | http://hdl.handle.net/11449/73085 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/73085 | - |
dc.description.abstract | The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques. © 2011 IEEE. | en |
dc.format.extent | 5084-5087 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Automatic classification | - |
dc.subject | Germ cells | - |
dc.subject | Machine learning techniques | - |
dc.subject | Recognition accuracy | - |
dc.subject | Supervised pattern recognition | - |
dc.subject | Pattern recognition | - |
dc.subject | Cells | - |
dc.title | Automatic classification of fish germ cells through optimum-path forest | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Southwest Paulista College | - |
dc.description.affiliation | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | - |
dc.description.affiliation | Department of Biological Sciences Universidade Estadual Paulista (UNESP), Bauru | - |
dc.description.affiliation | Southwest Paulista College, Avaré | - |
dc.description.affiliationUnesp | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | - |
dc.description.affiliationUnesp | Department of Biological Sciences Universidade Estadual Paulista (UNESP), Bauru | - |
dc.identifier.doi | 10.1109/IEMBS.2011.6091259 | - |
dc.identifier.wos | WOS:000298810004007 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | - |
dc.identifier.scopus | 2-s2.0-84055193445 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.