Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/73086
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Spadoto, André A. | - |
dc.contributor.author | Guido, Rodrigo C. | - |
dc.contributor.author | Carnevali, Felipe L. | - |
dc.contributor.author | Pagnin, Andre F. | - |
dc.contributor.author | Falcão, Alexandre X. | - |
dc.contributor.author | Papa, João Paulo | - |
dc.date.accessioned | 2014-05-27T11:26:20Z | - |
dc.date.accessioned | 2016-10-25T18:36:22Z | - |
dc.date.available | 2014-05-27T11:26:20Z | - |
dc.date.available | 2016-10-25T18:36:22Z | - |
dc.date.issued | 2011-12-26 | - |
dc.identifier | http://dx.doi.org/10.1109/IEMBS.2011.6091936 | - |
dc.identifier.citation | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 7857-7860. | - |
dc.identifier.issn | 1557-170X | - |
dc.identifier.uri | http://hdl.handle.net/11449/73086 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/73086 | - |
dc.description.abstract | Parkinson's disease (PD) automatic identification has been actively pursued over several works in the literature. In this paper, we deal with this problem by applying evolutionary-based techniques in order to find the subset of features that maximize the accuracy of the Optimum-Path Forest (OPF) classifier. The reason for the choice of this classifier relies on its fast training phase, given that each possible solution to be optimized is guided by the OPF accuracy. We also show results that improved other ones recently obtained in the context of PD automatic identification. © 2011 IEEE. | en |
dc.format.extent | 7857-7860 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Automatic identification | - |
dc.subject | Parkinson's disease | - |
dc.subject | Possible solutions | - |
dc.subject | Training phase | - |
dc.subject | Automation | - |
dc.subject | Neurodegenerative diseases | - |
dc.subject | Feature extraction | - |
dc.title | Improving Parkinson's disease identification through evolutionary-based feature selection | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Institute of Physics at São Carlos University of São Paulo, São Carlos | - |
dc.description.affiliation | Department of Computing Federal University of São Carlos, São Carlos | - |
dc.description.affiliation | Institute of Computing University of Campinas, Campinas | - |
dc.description.affiliation | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | - |
dc.description.affiliationUnesp | Department of Computing Universidade Estadual Paulista (UNESP), Bauru | - |
dc.identifier.doi | 10.1109/IEMBS.2011.6091936 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | - |
dc.identifier.scopus | 2-s2.0-84055219309 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.