You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/73089
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Brito, Moacyr A.G.-
dc.contributor.authorJunior, Luigi G.-
dc.contributor.authorSampaio, Leonardo P.-
dc.contributor.authorE Melo, Guilherme A.-
dc.contributor.authorCanesin, Carlos A.-
dc.date.accessioned2014-05-27T11:26:20Z-
dc.date.accessioned2016-10-25T18:36:22Z-
dc.date.available2014-05-27T11:26:20Z-
dc.date.available2016-10-25T18:36:22Z-
dc.date.issued2011-12-28-
dc.identifierhttp://dx.doi.org/10.1109/COBEP.2011.6085188-
dc.identifier.citationCOBEP 2011 - 11th Brazilian Power Electronics Conference, p. 524-530.-
dc.identifier.urihttp://hdl.handle.net/11449/73089-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73089-
dc.description.abstractThis paper presents evaluations among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic panel (PV) (Tracking Factor - TF) in relation to the available power, PV voltage ripple, dynamic response and use of sensors. Using MatLab/Simulink® and DSpace platforms, a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented and a contribution in the implementation of the IC algorithm is performed and called IC based on PI. Moreover, the dynamic response and the tracking factor are also evaluated using a Friendly User Interface, which is capable of online program power curves and compute the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2011 IEEE.en
dc.format.extent524-530-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectPhotovoltaic Energy-
dc.subjectPV MPPT Algorithms-
dc.subjectPV Power Profile-
dc.subjectPV Tracking Factor-
dc.subjectRenewable Energy-
dc.subjectAgilent-
dc.subjectAnalytical procedure-
dc.subjectBoost DC-DC converter-
dc.subjectD-space-
dc.subjectMATLAB /simulink-
dc.subjectMaximum Power Point Tracking-
dc.subjectOnline programs-
dc.subjectPhotovoltaic energy-
dc.subjectPhotovoltaic panels-
dc.subjectPhotovoltaics-
dc.subjectPower curves-
dc.subjectPower profile-
dc.subjectRenewable energies-
dc.subjectSolar arrays-
dc.subjectVoltage ripples-
dc.subjectAlgorithms-
dc.subjectDC-DC converters-
dc.subjectDynamic response-
dc.subjectPhotovoltaic effects-
dc.subjectPower electronics-
dc.subjectUser interfaces-
dc.subjectDC power transmission-
dc.titleMain maximum power point tracking strategies intended for photovoltaicsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State University - UNESP Power Electronics Laboratory Electrical Engineering Department, Av. Prof. Joś Carlos Rossi 1370, Ilha Solteira, SP 15385-000-
dc.description.affiliationUnespSão Paulo State University - UNESP Power Electronics Laboratory Electrical Engineering Department, Av. Prof. Joś Carlos Rossi 1370, Ilha Solteira, SP 15385-000-
dc.identifier.doi10.1109/COBEP.2011.6085188-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofCOBEP 2011 - 11th Brazilian Power Electronics Conference-
dc.identifier.scopus2-s2.0-84255191488-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.