You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/73190
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlbuquerque, Victor H. C.-
dc.contributor.authorNakamura, Rodrigo Y. M.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorSilva, Cleiton C.-
dc.contributor.authorTavares, João Manuel R. S.-
dc.date.accessioned2014-05-27T11:26:23Z-
dc.date.accessioned2016-10-25T18:36:36Z-
dc.date.available2014-05-27T11:26:23Z-
dc.date.available2016-10-25T18:36:36Z-
dc.date.issued2012-02-13-
dc.identifierhttp://www.crcpress.com/product/isbn/9780415683951-
dc.identifier.citationComputational Vision and Medical Image Processing, Proceedings of VipIMAGE 2011 - 3rd ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, p. 161-166.-
dc.identifier.urihttp://hdl.handle.net/11449/73190-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73190-
dc.description.abstractDuplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that γ 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of γ 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates. © 2012 Taylor & Francis Group.en
dc.format.extent161-166-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAutomatic segmentations-
dc.subjectBayesian classifier-
dc.subjectChemical compositions-
dc.subjectMachine learning techniques-
dc.subjectPattern recognition techniques-
dc.subjectRecognition rates-
dc.subjectSteel quality-
dc.subjectSuperduplex stainless steels-
dc.subjectImage processing-
dc.subjectMechanical properties-
dc.subjectMedical image processing-
dc.subjectPattern recognition-
dc.subjectStainless steel-
dc.titleAutomatic segmentation of the secondary austenite-phase island precipitates in a superduplex stainless steel weld metalen
dc.typeoutro-
dc.contributor.institutionUniversidade de Fortaleza (UNIFOR)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do Ceará (UFC)-
dc.description.affiliationUniversidade de Fortal̀eza Centro de Ciências Tecnológicas, Fortaleza-
dc.description.affiliationDepartamento de Computação UNESP-Universidade Estadual Paulista, Bauru-
dc.description.affiliationDepartamento de Engenharia Metalúrgica e Materiais Universidade Federal do Ceará, Fortaleza-
dc.description.affiliationUniversidade do Porto Faculdade de Engenharia, Porto-
dc.description.affiliationUnespDepartamento de Computação UNESP-Universidade Estadual Paulista, Bauru-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputational Vision and Medical Image Processing, Proceedings of VipIMAGE 2011 - 3rd ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing-
dc.identifier.scopus2-s2.0-84856731518-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.