You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/73507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Leonardo N.-
dc.contributor.authorPinto, A. R.-
dc.contributor.authorZhao, Liang-
dc.date.accessioned2014-05-27T11:26:56Z-
dc.date.accessioned2016-10-25T18:37:53Z-
dc.date.available2014-05-27T11:26:56Z-
dc.date.available2016-10-25T18:37:53Z-
dc.date.issued2012-08-22-
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2012.6252477-
dc.identifier.citationProceedings of the International Joint Conference on Neural Networks.-
dc.identifier.urihttp://hdl.handle.net/11449/73507-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73507-
dc.description.abstractWireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectCluster head-
dc.subjectCluster-head nodes-
dc.subjectClustering techniques-
dc.subjectCommunity detection-
dc.subjectComplex networks-
dc.subjectHybrid clustering algorithm-
dc.subjectK-means-
dc.subjectK-means clustering techniques-
dc.subjectPhysical phenomena-
dc.subjectRadio coverage-
dc.subjectSmall clusters-
dc.subjectClustering algorithms-
dc.subjectNeural networks-
dc.subjectPopulation dynamics-
dc.subjectSensor nodes-
dc.titleQK-Means: A clustering technique based on community detection and K-Means for deployment of cluster head nodesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstitute of Mathematics and Computer Science University of São Paulo, Av. Trabalhador São-carlense 400, Caixa Postal: 668, CEP: 13560-970, Sao Carlos, São Paulo-
dc.description.affiliationDCCE IBILCE Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP-
dc.description.affiliationUnespDCCE IBILCE Universidade Estadual Paulista, UNESP, São José do Rio Preto, SP-
dc.identifier.doi10.1109/IJCNN.2012.6252477-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networks-
dc.identifier.scopus2-s2.0-84865104073-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.