You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/73556
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDos Santos, Fabiano Fernandes-
dc.contributor.authorDe Carvalho And, Veronica Oliveira-
dc.contributor.authorRezende, Solange Oliveira-
dc.date.accessioned2014-05-27T11:26:58Z-
dc.date.accessioned2016-10-25T18:38:20Z-
dc.date.available2014-05-27T11:26:58Z-
dc.date.available2016-10-25T18:38:20Z-
dc.date.issued2012-09-03-
dc.identifierhttp://dx.doi.org/10.3233/IDT-2012-0121-
dc.identifier.citationIntelligent Decision Technologies, v. 6, n. 1, p. 43-58, 2012.-
dc.identifier.issn1872-4981-
dc.identifier.issn1875-8843-
dc.identifier.urihttp://hdl.handle.net/11449/73556-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73556-
dc.description.abstractOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels must be built using all the terms in the documents of the collection. This paper presents the SeCLAR method, which explores the use of association rules in the selection of good candidates for labels of hierarchical document clusters. The purpose of this method is to select a subset of terms by exploring the relationship among the terms of each document. Thus, these candidates can be processed by a classical method to generate the labels. An experimental study demonstrates the potential of the proposed approach to improve the precision and recall of labels obtained by classical methods only considering the terms which are potentially more discriminative. © 2012 - IOS Press and the authors. All rights reserved.en
dc.format.extent43-58-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectassociation rules-
dc.subjectLabeling hierarchical clustering-
dc.subjecttext mining-
dc.subjectClassical methods-
dc.subjectExperimental studies-
dc.subjectHier-archical clustering-
dc.subjectHierarchical document-
dc.subjectPrecision and recall-
dc.subjectSearch and retrieval-
dc.subjectStructural representation-
dc.subjectText mining-
dc.subjectData mining-
dc.subjectAssociation rules-
dc.titleImproving hierarchical document cluster labels through candidate term selectionen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo (USP), R. Dr. Carlos de Camargo Salles, 446 Ap 13, São Carlos, SP-
dc.description.affiliationInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista (UNESP), Rio Claro, SP-
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista (UNESP), Rio Claro, SP-
dc.identifier.doi10.3233/IDT-2012-0121-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIntelligent Decision Technologies-
dc.identifier.scopus2-s2.0-84865456636-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.