You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/73809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAfonso, L.-
dc.contributor.authorPapa, J.-
dc.contributor.authorPapa, L.-
dc.contributor.authorMarana, Aparecido Nilceu-
dc.contributor.authorRocha, Anderson-
dc.date.accessioned2014-05-27T11:27:17Z-
dc.date.accessioned2016-10-25T18:40:00Z-
dc.date.available2014-05-27T11:27:17Z-
dc.date.available2016-10-25T18:40:00Z-
dc.date.issued2012-12-01-
dc.identifierhttp://dx.doi.org/10.1109/ICIP.2012.6467255-
dc.identifier.citationProceedings - International Conference on Image Processing, ICIP, p. 1897-1900.-
dc.identifier.issn1522-4880-
dc.identifier.urihttp://hdl.handle.net/11449/73809-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73809-
dc.description.abstractImage categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation. © 2012 IEEE.en
dc.format.extent1897-1900-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAutomatic Visual Word Dictionary Calculation-
dc.subjectBag-of-visual Words-
dc.subjectClustering algorithms-
dc.subjectOptimum-Path Forest-
dc.subjectDiscriminative features-
dc.subjectGraph-based clustering-
dc.subjectImage Categorization-
dc.subjectInvariant points-
dc.subjectOptimum-path forests-
dc.subjectState-of-the-art techniques-
dc.subjectUser intervention-
dc.subjectVision communities-
dc.subjectVisual dictionaries-
dc.subjectVisual word-
dc.subjectForestry-
dc.subjectImage processing-
dc.subjectAlgorithms-
dc.subjectImage Analysis-
dc.titleAutomatic visual dictionary generation through Optimum-Path Forest clusteringen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Department of Computing-
dc.description.affiliationUniversity of Campinas Institute of Computing-
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Department of Computing-
dc.identifier.doi10.1109/ICIP.2012.6467255-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings - International Conference on Image Processing, ICIP-
dc.identifier.scopus2-s2.0-84875818163-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.