You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/73818
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPisani, R.-
dc.contributor.authorRiedel, P.-
dc.contributor.authorCosta, K.-
dc.contributor.authorNakamura, R.-
dc.contributor.authorPereira, C.-
dc.contributor.authorRosa, G.-
dc.contributor.authorPapa, J.-
dc.date.accessioned2014-05-27T11:27:17Z-
dc.date.accessioned2016-10-25T18:40:02Z-
dc.date.available2014-05-27T11:27:17Z-
dc.date.available2016-10-25T18:40:02Z-
dc.date.issued2012-12-01-
dc.identifierhttp://dx.doi.org/10.1109/IGARSS.2012.6352681-
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), p. 6228-6231.-
dc.identifier.urihttp://hdl.handle.net/11449/73818-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73818-
dc.description.abstractIn this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.en
dc.format.extent6228-6231-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAutomatic recognition-
dc.subjectBayesian classifier-
dc.subjectCross validation-
dc.subjectKernel mapping-
dc.subjectOptimum-path forests-
dc.subjectRadial basis functions-
dc.subjectRecognition rates-
dc.subjectSupervised classification-
dc.subjectGeology-
dc.subjectRadial basis function networks-
dc.subjectRemote sensing-
dc.subjectLandslides-
dc.titleAutomatic landslide recognition through Optimum-Path Foresten
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP - São Paulo State University Geosciences and Exact Sciences Institute-
dc.description.affiliationUNESP - São Paulo State University Department of Computing-
dc.description.affiliationUnespUNESP - São Paulo State University Geosciences and Exact Sciences Institute-
dc.description.affiliationUnespUNESP - São Paulo State University Department of Computing-
dc.identifier.doi10.1109/IGARSS.2012.6352681-
dc.identifier.wosWOS:000313189406055-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)-
dc.identifier.scopus2-s2.0-84873124352-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.