You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/73827
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCosta, Kelton-
dc.contributor.authorPereira, Clayton-
dc.contributor.authorNakamura, Rodrigo-
dc.contributor.authorPapa, Joao-
dc.date.accessioned2014-05-27T11:27:18Z-
dc.date.accessioned2016-10-25T18:40:03Z-
dc.date.available2014-05-27T11:27:18Z-
dc.date.available2016-10-25T18:40:03Z-
dc.date.issued2012-12-01-
dc.identifierhttp://dx.doi.org/10.1109/LCN.2012.6423588-
dc.identifier.citationProceedings - Conference on Local Computer Networks, LCN, p. 128-131.-
dc.identifier.urihttp://hdl.handle.net/11449/73827-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73827-
dc.description.abstractNowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.en
dc.format.extent128-131-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectMachine learning techniques-
dc.subjectManual labeling-
dc.subjectOptimum-path forests-
dc.subjectPattern recognition techniques-
dc.subjectTraditional clustering-
dc.subjectUnsupervised techniques-
dc.subjectForestry-
dc.subjectIntrusion detection-
dc.subjectLearning systems-
dc.subjectPattern recognition-
dc.subjectClustering algorithms-
dc.subjectAlgorithms-
dc.subjectData-
dc.subjectNetworks-
dc.subjectSet-
dc.titleIntrusion detection in computer networks using optimum-path forest clusteringen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Computing Universidade Estadual Paulista (UNESP)-
dc.description.affiliationUnespDepartment of Computing Universidade Estadual Paulista (UNESP)-
dc.identifier.doi10.1109/LCN.2012.6423588-
dc.identifier.wosWOS:000316963600016-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings - Conference on Local Computer Networks, LCN-
dc.identifier.scopus2-s2.0-84874287364-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.