Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/73827
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Costa, Kelton | - |
dc.contributor.author | Pereira, Clayton | - |
dc.contributor.author | Nakamura, Rodrigo | - |
dc.contributor.author | Papa, Joao | - |
dc.date.accessioned | 2014-05-27T11:27:18Z | - |
dc.date.accessioned | 2016-10-25T18:40:03Z | - |
dc.date.available | 2014-05-27T11:27:18Z | - |
dc.date.available | 2016-10-25T18:40:03Z | - |
dc.date.issued | 2012-12-01 | - |
dc.identifier | http://dx.doi.org/10.1109/LCN.2012.6423588 | - |
dc.identifier.citation | Proceedings - Conference on Local Computer Networks, LCN, p. 128-131. | - |
dc.identifier.uri | http://hdl.handle.net/11449/73827 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/73827 | - |
dc.description.abstract | Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE. | en |
dc.format.extent | 128-131 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Machine learning techniques | - |
dc.subject | Manual labeling | - |
dc.subject | Optimum-path forests | - |
dc.subject | Pattern recognition techniques | - |
dc.subject | Traditional clustering | - |
dc.subject | Unsupervised techniques | - |
dc.subject | Forestry | - |
dc.subject | Intrusion detection | - |
dc.subject | Learning systems | - |
dc.subject | Pattern recognition | - |
dc.subject | Clustering algorithms | - |
dc.subject | Algorithms | - |
dc.subject | Data | - |
dc.subject | Networks | - |
dc.subject | Set | - |
dc.title | Intrusion detection in computer networks using optimum-path forest clustering | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Department of Computing Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliationUnesp | Department of Computing Universidade Estadual Paulista (UNESP) | - |
dc.identifier.doi | 10.1109/LCN.2012.6423588 | - |
dc.identifier.wos | WOS:000316963600016 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Proceedings - Conference on Local Computer Networks, LCN | - |
dc.identifier.scopus | 2-s2.0-84874287364 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.