Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/73832
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorNakamura, R. Y M-
dc.contributor.authorPereira, L. A M-
dc.contributor.authorCosta, K. A.-
dc.contributor.authorRodrigues, D.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorYang, X. S.-
dc.date.accessioned2014-05-27T11:27:18Z-
dc.date.accessioned2016-10-25T18:40:04Z-
dc.date.available2014-05-27T11:27:18Z-
dc.date.available2016-10-25T18:40:04Z-
dc.date.issued2012-12-01-
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2012.47-
dc.identifier.citationBrazilian Symposium of Computer Graphic and Image Processing, p. 291-297.-
dc.identifier.issn1530-1834-
dc.identifier.urihttp://hdl.handle.net/11449/73832-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/73832-
dc.description.abstractFeature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be in-viable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the bats behaviour, which has never been applied to this context so far. The wrapper approach combines the power of exploration of the bats together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in five public datasets have demonstrated that the proposed approach can outperform some well-known swarm-based techniques. © 2012 IEEE.en
dc.format.extent291-297-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectbat algorithm-
dc.subjectfeature selection-
dc.subjectoptimum-path forest-
dc.subjectData sets-
dc.subjectExhaustive search-
dc.subjectOptimization problems-
dc.subjectOptimum-path forests-
dc.subjectSelection techniques-
dc.subjectWrapper approach-
dc.subjectFeature extraction-
dc.subjectForestry-
dc.subjectAlgorithms-
dc.subjectAutomatic Control-
dc.subjectOptimization-
dc.subjectProblem Solving-
dc.subjectTechniques-
dc.titleBBA: A binary bat algorithm for feature selectionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionNational Physical Laboratory-
dc.description.affiliationDepartment of Computing São Paulo State University, Bauru-
dc.description.affiliationNational Physical Laboratory, London-
dc.description.affiliationUnespDepartment of Computing São Paulo State University, Bauru-
dc.identifier.doi10.1109/SIBGRAPI.2012.47-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofBrazilian Symposium of Computer Graphic and Image Processing-
dc.identifier.scopus2-s2.0-84872367831-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.