Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/74192
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorDe Lima, Lionete Nunes-
dc.contributor.authorAragon, Caio C.-
dc.contributor.authorMateo, Cesar-
dc.contributor.authorPalomo, Jose M.-
dc.contributor.authorGiordano, Raquel L.C.-
dc.contributor.authorTardioli, Paulo W.-
dc.contributor.authorGuisan, Jose M.-
dc.contributor.authorFernandez-Lorente, Gloria-
dc.date.accessioned2014-05-27T11:27:29Z-
dc.date.accessioned2016-10-25T18:40:59Z-
dc.date.available2014-05-27T11:27:29Z-
dc.date.available2016-10-25T18:40:59Z-
dc.date.issued2013-01-01-
dc.identifierhttp://dx.doi.org/10.1016/j.procbio.2012.11.008-
dc.identifier.citationProcess Biochemistry, v. 48, n. 1, p. 118-123, 2013.-
dc.identifier.issn1359-5113-
dc.identifier.urihttp://hdl.handle.net/11449/74192-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/74192-
dc.description.abstractThe soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol. © 2012 Elsevier Ltd. All rights reserved.en
dc.format.extent118-123-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectEnzyme immobilization and stabilization-
dc.subjectImproved enantioselectivity-
dc.subjectLipase aggregates-
dc.subjectPseudomonas fluorescens lipase-
dc.subjectActive center-
dc.subjectAlkaline conditions-
dc.subjectAqueous media-
dc.subjectBenzyl alcohol-
dc.subjectCovalent linkage-
dc.subjectEthyl esters-
dc.subjectGlyoxyl-
dc.subjectMultipoint attachment-
dc.subjectMultipoint covalent attachments-
dc.subjectPseudomonas fluorescens-
dc.subjectSoluble enzymes-
dc.subjectSoluble lipase-
dc.subjectTerminal residues-
dc.subjectTert-amyl alcohols-
dc.subjectThermal inactivation-
dc.subjectTriton X-100-
dc.subjectAlkalinity-
dc.subjectAmino acids-
dc.subjectBacteria-
dc.subjectEnzyme immobilization-
dc.subjectMonomers-
dc.subjectOrganic solvents-
dc.subjectStabilization-
dc.subjectVegetable oils-
dc.subjectAggregates-
dc.titleImmobilization and stabilization of a bimolecular aggregate of the lipase from Pseudomonas fluorescens by multipoint covalent attachmenten
dc.typeoutro-
dc.contributor.institutionCSIC-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionCSIC-UAM-
dc.description.affiliationInstituto de Catalisis CSIC, 28049 Madrid-
dc.description.affiliationChemical Engineering Department Federal University of São Carlos, São Carlos, SP-
dc.description.affiliationInstituto de Química UNESP-Univ. Estadual Paulista Departamento de Bioquímica e Tecnologia Química, Araraquara, SP-
dc.description.affiliationInstituto de Investigación en Ciencias de la Alimentación (CIAL) CSIC-UAM, 28049 Madrid-
dc.description.affiliationUnespInstituto de Química UNESP-Univ. Estadual Paulista Departamento de Bioquímica e Tecnologia Química, Araraquara, SP-
dc.identifier.doi10.1016/j.procbio.2012.11.008-
dc.identifier.wosWOS:000316426000015-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProcess Biochemistry-
dc.identifier.scopus2-s2.0-84874108298-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.