You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/74468
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorNakamura, Rodrigo Y.M.-
dc.contributor.authorDe Albuquerque, Victor Hugo C.-
dc.contributor.authorFalcão, Alexandre X.-
dc.contributor.authorTavares, João Manuel R.S.-
dc.date.accessioned2014-05-27T11:28:17Z-
dc.date.accessioned2016-10-25T18:43:16Z-
dc.date.available2014-05-27T11:28:17Z-
dc.date.available2016-10-25T18:43:16Z-
dc.date.issued2013-02-01-
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2012.07.062-
dc.identifier.citationExpert Systems with Applications, v. 40, n. 2, p. 590-597, 2013.-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://hdl.handle.net/11449/74468-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/74468-
dc.description.abstractThe automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed. © 2012 Elsevier Ltd. All rights reserved.en
dc.format.extent590-597-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectComputer classifiers-
dc.subjectComputer methods-
dc.subjectGray and malleable cast irons-
dc.subjectMaterial characterization-
dc.subjectNodular-
dc.subjectOtsu's method-
dc.subjectBinarize-
dc.subjectComplex methods-
dc.subjectComputer techniques-
dc.subjectGraphite particles-
dc.subjectIndustrial materials-
dc.subjectMachine learning classification-
dc.subjectMalleable cast iron-
dc.subjectMaterial characterizations-
dc.subjectMechanical properties of materials-
dc.subjectMetallographic images-
dc.subjectOptimum-path forests-
dc.subjectForestry-
dc.subjectGraphite-
dc.subjectIndustry-
dc.subjectMalleable iron castings-
dc.subjectMechanical properties-
dc.subjectMetallography-
dc.subjectCharacterization-
dc.subjectCastings-
dc.subjectClassifiers-
dc.subjectComputers-
dc.subjectIron-
dc.subjectMechanical Properties-
dc.titleComputer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materialsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de Fortaleza-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Do Porto-
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Departamento de Computação, Bauru-
dc.description.affiliationPrograma de Pós-Graduação em Informática Aplicada Universidade de Fortaleza, Fortaleza-
dc.description.affiliationUniversidade de Campinas Instituto de Computação, Campinas-
dc.description.affiliationFaculdade de Engenharia Universidade Do Porto, Porto-
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Departamento de Computação, Bauru-
dc.identifier.doi10.1016/j.eswa.2012.07.062-
dc.identifier.wosWOS:000310945000020-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofExpert Systems with Applications-
dc.identifier.scopus2-s2.0-84867677551-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.