Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/74476
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ferreira, V. G. | - |
dc.contributor.author | Kaibara, M. K. | - |
dc.contributor.author | Lima, G. A B | - |
dc.contributor.author | Silva, J. M. | - |
dc.contributor.author | Sabatini, M. H. | - |
dc.contributor.author | Mancera, P. F A | - |
dc.contributor.author | McKee, S. | - |
dc.date.accessioned | 2014-05-27T11:28:18Z | - |
dc.date.accessioned | 2016-10-25T18:43:17Z | - |
dc.date.available | 2014-05-27T11:28:18Z | - |
dc.date.available | 2016-10-25T18:43:17Z | - |
dc.date.issued | 2013-02-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.mcm.2012.06.021 | - |
dc.identifier.citation | Mathematical and Computer Modelling, v. 57, n. 3-4, p. 435-459, 2013. | - |
dc.identifier.issn | 0895-7177 | - |
dc.identifier.uri | http://hdl.handle.net/11449/74476 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/74476 | - |
dc.description.abstract | This paper is concerned with an overview of upwinding schemes, and further nonlinear applications of a recently introduced high resolution upwind differencing scheme, namely the ADBQUICKEST [V.G. Ferreira, F.A. Kurokawa, R.A.B. Queiroz, M.K. Kaibara, C.M. Oishi, J.A.Cuminato, A.F. Castelo, M.F. Tomé, S. McKee, assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, International Journal for Numerical Methods in Fluids 60 (2009) 1-26]. The ADBQUICKEST scheme is a new TVD version of the QUICKEST [B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19 (1979) 59-98] for solving nonlinear balance laws. The scheme is based on the concept of NV and TVD formalisms and satisfies a convective boundedness criterion. The accuracy of the scheme is compared with other popularly used convective upwinding schemes (see, for example, Roe (1985) [19], Van Leer (1974) [18] and Arora & Roe (1997) [17]) for solving nonlinear conservation laws (for example, Buckley-Leverett, shallow water and Euler equations). The ADBQUICKEST scheme is then used to solve six types of fluid flow problems of increasing complexity: namely, 2D aerosol filtration by fibrous filters; axisymmetric flow in a tubular membrane; 2D two-phase flow in a fluidized bed; 2D compressible Orszag-Tang MHD vortex; axisymmetric jet onto a flat surface at low Reynolds number and full 3D incompressible flows involving moving free surfaces. The numerical simulations indicate that this convective upwinding scheme is a good generic alternative for solving complex fluid dynamics problems. © 2012. | en |
dc.format.extent | 435-459 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Advective transport | - |
dc.subject | Boundedness | - |
dc.subject | CBC/TVD stability | - |
dc.subject | Convection modeling | - |
dc.subject | Flux limiter | - |
dc.subject | Free surface flows | - |
dc.subject | High resolution | - |
dc.subject | Monotonic interpolation | - |
dc.subject | Normalized variables | - |
dc.subject | Upwinding | - |
dc.subject | Flux limiters | - |
dc.subject | Free-surface flow | - |
dc.subject | Computational fluid dynamics | - |
dc.subject | Crystallography | - |
dc.subject | Euler equations | - |
dc.subject | Fluidized beds | - |
dc.subject | Incompressible flow | - |
dc.subject | Interpolation | - |
dc.subject | Liquids | - |
dc.subject | Microfiltration | - |
dc.subject | Reynolds number | - |
dc.subject | Two dimensional | - |
dc.subject | Magnetohydrodynamics | - |
dc.title | Application of a bounded upwinding scheme to complex fluid dynamics problems | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Federal Fluminense (UFF) | - |
dc.contributor.institution | Universidade Federal de Alfenas (UNIFAL) | - |
dc.contributor.institution | Universidade Estadual do Centro Oeste (UNICENTRO) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | University of Strathclyde | - |
dc.description.affiliation | Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação-USP, São Carlos, SP | - |
dc.description.affiliation | Departamento de Matemática Aplicada Universidade Federal Fluminense - UFF, Niterói, RJ | - |
dc.description.affiliation | Instituto de Ciência e Tecnologia Universidade Federal de Alfenas-UNIFAL, Poços de Caldas, MG | - |
dc.description.affiliation | Departamento de Matemática Universidade Estadual do Centro-Oeste do Paraná - UNICENTRO, Guarapuava, PR | - |
dc.description.affiliation | Departamento de Bioestatística Instituto de Biociências-UNESP, Botucatu, SP | - |
dc.description.affiliation | Department of Mathematics and Statistics University of Strathclyde, Glasgow | - |
dc.description.affiliationUnesp | Departamento de Bioestatística Instituto de Biociências-UNESP, Botucatu, SP | - |
dc.identifier.doi | 10.1016/j.mcm.2012.06.021 | - |
dc.identifier.wos | WOS:000311911700013 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Mathematical and Computer Modelling | - |
dc.identifier.scopus | 2-s2.0-84870532119 | - |
dc.identifier.orcid | 0000-0002-2080-8053 | pt |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.