You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/74594
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFloriano, E. A.-
dc.contributor.authorScalvi, Luis Vicente de Andrade-
dc.contributor.authorSambrano, Julio Ricardo-
dc.contributor.authorDe Andrade, A.-
dc.date.accessioned2014-05-27T11:28:27Z-
dc.date.accessioned2016-10-25T18:44:32Z-
dc.date.available2014-05-27T11:28:27Z-
dc.date.available2016-10-25T18:44:32Z-
dc.date.issued2013-02-15-
dc.identifierhttp://dx.doi.org/10.1016/j.apsusc.2012.09.003-
dc.identifier.citationApplied Surface Science, v. 267, p. 164-168.-
dc.identifier.issn0169-4332-
dc.identifier.urihttp://hdl.handle.net/11449/74594-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/74594-
dc.description.abstractDoping tin dioxide (SnO2) with pentavalent Sb5+ ions leads to an enhancement in the electrical conductivity of this material, because Sb5+ substitutes Sn4+ in the matrix, promoting an electronic density increase in the conduction band, due to the donor-like nature of the doping atom. Results of computational simulation, based on the Density Functional Theory (DFT), of SnO2:4%Sb and SnO2:8%Sb show that the bandgap magnitude is strongly affected by the doping concentration, because the energy value found for 4 at%Sb and 8 at%Sb was 3.27 eV and 3.13 eV, respectively, whereas the well known value for undoped SnO2 is about 3.6 eV. Sb-doped SnO2 thin films were obtained by the sol-gel-dip-coating technique. The samples were submitted to excitation with below theoretical bandgap light (450 nm), as well as above bandgap light (266 nm) at low temperature, and a temperature-dependent increase in the conductivity is observed. Besides, an unusual temperature and time dependent decay when the illumination is removed is also observed, where the decay time is slower for higher temperatures. This decay is modeled by considering thermally activated cross section of trapping centers, and the hypothesis of grain boundary scattering as the dominant mechanism for electronic mobility. © 2012 Elsevier B.V. All rights reserved.en
dc.format.extent164-168-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectElectrical conductivity-
dc.subjectElectronic structure-
dc.subjectSol-gel-
dc.subjectThin films-
dc.subjectTin dioxide-
dc.subjectBand gap energy-
dc.subjectComputational simulation-
dc.subjectDecay time-
dc.subjectDensity functional theories (DFT)-
dc.subjectDominant mechanism-
dc.subjectDoping atoms-
dc.subjectDoping concentration-
dc.subjectElectronic density-
dc.subjectElectronic mobility-
dc.subjectEnergy value-
dc.subjectGrain boundary scattering-
dc.subjectLow temperatures-
dc.subjectMonochromatic light-
dc.subjectPhoto-induced-
dc.subjectSb-doped SnO-
dc.subjectTemperature dependent-
dc.subjectThermally activated-
dc.subjectTime-dependent decay-
dc.subjectTrapping centers-
dc.subjectDensity functional theory-
dc.subjectElectric conductivity-
dc.subjectEnergy gap-
dc.subjectGrain boundaries-
dc.subjectSol-gel process-
dc.subjectSol-gels-
dc.subjectTin-
dc.titleDecay of photo-induced conductivity in Sb-doped SnO2 thin films, using monochromatic light of about bandgap energyen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationPhysics Dept.-FC UNESP São Paulo State University, Bauru, SP-
dc.description.affiliationPost-graduate Program in Science and Technology of Materials UNESP, SP-
dc.description.affiliationMathematics Dept.-FC UNESP, Bauru, SP-
dc.description.affiliationChemistry Dept. UNESP, Bauru, SP-
dc.description.affiliationUnespPhysics Dept.-FC UNESP São Paulo State University, Bauru, SP-
dc.description.affiliationUnespPost-graduate Program in Science and Technology of Materials UNESP, SP-
dc.description.affiliationUnespMathematics Dept.-FC UNESP, Bauru, SP-
dc.description.affiliationUnespChemistry Dept. UNESP, Bauru, SP-
dc.identifier.doi10.1016/j.apsusc.2012.09.003-
dc.identifier.wosWOS:000314881900039-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Surface Science-
dc.identifier.scopus2-s2.0-84873709464-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.