You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/74608
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLodwick, Weldon A.-
dc.contributor.authorJenkins, Oscar A.-
dc.date.accessioned2014-05-27T11:28:28Z-
dc.date.accessioned2016-10-25T18:44:34Z-
dc.date.available2014-05-27T11:28:28Z-
dc.date.available2016-10-25T18:44:34Z-
dc.date.issued2013-02-19-
dc.identifierhttp://dx.doi.org/10.1007/s00500-013-1006-x-
dc.identifier.citationSoft Computing, v. 17, n. 8, p. 1393-1402, 2013.-
dc.identifier.issn1432-7643-
dc.identifier.issn1433-7479-
dc.identifier.urihttp://hdl.handle.net/11449/74608-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/74608-
dc.description.abstractConstrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radström, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. © 2013 Springer-Verlag Berlin Heidelberg.en
dc.format.extent1393-1402-
dc.language.isoeng-
dc.sourceScopus-
dc.subject(standard) interval arithmetic-
dc.subjectConstrained interval arithmetic-
dc.subjectInterval analysis-
dc.subjectInterval spaces-
dc.subjectInterval arithmetic-
dc.subjectLinear functions-
dc.subjectNon negatives-
dc.subjectQuasi-linear-
dc.subjectSoft computing-
dc.subjectSoftware engineering-
dc.subjectPolynomials-
dc.titleConstrained intervals and interval spacesen
dc.typeoutro-
dc.contributor.institutionUniversity of Colorado Denver-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Mathematics University of Colorado Denver, Denver-
dc.description.affiliationDepartamento de Matemática Aplicada UNESP, São José do Rio Preto-
dc.description.affiliationUnespDepartamento de Matemática Aplicada UNESP, São José do Rio Preto-
dc.identifier.doi10.1007/s00500-013-1006-x-
dc.identifier.wosWOS:000321644600008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofSoft Computing-
dc.identifier.scopus2-s2.0-84880844907-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.