You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/74897
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCruz, Carlos Eduardo Dorigatti-
dc.contributor.authorDe Aguiar, Paulo Roberto-
dc.contributor.authorMachado, Álisson Rocha-
dc.contributor.authorBianchi, Eduardo Carlos-
dc.contributor.authorContrucci, João Gabriel-
dc.contributor.authorNeto, Frederico Castro-
dc.date.accessioned2014-05-27T11:28:44Z-
dc.date.accessioned2016-10-25T18:45:56Z-
dc.date.available2014-05-27T11:28:44Z-
dc.date.available2016-10-25T18:45:56Z-
dc.date.issued2013-04-01-
dc.identifierhttp://dx.doi.org/10.1007/s00170-012-4314-x-
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology, v. 66, n. 1-4, p. 151-158, 2013.-
dc.identifier.issn0268-3768-
dc.identifier.issn1433-3015-
dc.identifier.urihttp://hdl.handle.net/11449/74897-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/74897-
dc.description.abstractThis paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.en
dc.format.extent151-158-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectArtificial neural network-
dc.subjectDrilling process monitoring-
dc.subjectHole diameter-
dc.subjectSurface roughness-
dc.subjectCutting process-
dc.subjectDevelopment and applications-
dc.subjectDrilling process-
dc.subjectExperimental measurements-
dc.subjectMonitoring methods-
dc.subjectNeural network systems-
dc.subjectSandwich plates-
dc.subjectCutting tools-
dc.subjectErrors-
dc.subjectProcess monitoring-
dc.subjectNeural networks-
dc.titleMonitoring in precision metal drilling process using multi-sensors and neural networken
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.description.affiliationDepartment of Electrical Engineering Univ Estadual Paulista UNESP, Av. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru SP-
dc.description.affiliationDepartment of Mechanical Engineering Univ Estadual Paulista UNESP, Av. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru SP-
dc.description.affiliationSchool of Mechanical Engineering Federal University of Uberlândia, Av. João Naves D'Ávila, 2121, Santa Mônica, Uberlândia MG 38408-100-
dc.description.affiliationUnespDepartment of Electrical Engineering Univ Estadual Paulista UNESP, Av. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru SP-
dc.description.affiliationUnespDepartment of Mechanical Engineering Univ Estadual Paulista UNESP, Av. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru SP-
dc.identifier.doi10.1007/s00170-012-4314-x-
dc.identifier.wosWOS:000316574300013-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology-
dc.identifier.scopus2-s2.0-84875419084-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.