You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/74997
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Monique S.-
dc.contributor.authorGalo, Maria de Lourdes B.T.-
dc.date.accessioned2014-05-27T11:28:48Z-
dc.date.accessioned2016-10-25T18:46:35Z-
dc.date.available2014-05-27T11:28:48Z-
dc.date.available2016-10-25T18:46:35Z-
dc.date.issued2013-04-01-
dc.identifierhttp://dx.doi.org/10.1590/S0001-37652013005000037-
dc.identifier.citationAnais da Academia Brasileira de Ciencias, v. 85, n. 2, p. 519-532, 2013.-
dc.identifier.issn0001-3765-
dc.identifier.issn1678-2690-
dc.identifier.urihttp://hdl.handle.net/11449/74997-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/74997-
dc.description.abstractConsidering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks.en
dc.format.extent519-532-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectArtificial neural network-
dc.subjectChlorophyll a-
dc.subjectFluorescence-
dc.subjectRemote sensing of water-
dc.subjectSpatial inference-
dc.titleChlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurementsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationFCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.description.affiliationDepartamento de Cartografia FCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.description.affiliationUnespFCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.description.affiliationUnespDepartamento de Cartografia FCT/ UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP-
dc.identifier.doi10.1590/S0001-37652013005000037-
dc.identifier.scieloS0001-37652013005000037-
dc.identifier.wosWOS:000321395300007-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-84879580128.pdf-
dc.relation.ispartofAnais da Academia Brasileira de Ciências-
dc.identifier.scopus2-s2.0-84879580128-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.