You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75112
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, Diego F.M.-
dc.contributor.authorLeonel, Edson D.-
dc.date.accessioned2014-05-27T11:28:55Z-
dc.date.accessioned2016-10-25T18:47:25Z-
dc.date.available2014-05-27T11:28:55Z-
dc.date.available2016-10-25T18:47:25Z-
dc.date.issued2013-04-15-
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2012.12.021-
dc.identifier.citationPhysica A: Statistical Mechanics and its Applications, v. 392, n. 8, p. 1762-1769, 2013.-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/11449/75112-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/75112-
dc.description.abstractSome dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape. © 2013 Elsevier B.V. All rights reserved.en
dc.format.extent1762-1769-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBoundary crisis-
dc.subjectChaos-
dc.subjectFermi-map-
dc.subjectBasin of attraction-
dc.subjectBasins of attraction-
dc.subjectBouncing balls-
dc.subjectChaotic attractors-
dc.subjectDynamical properties-
dc.subjectFixed points-
dc.subjectParameter spaces-
dc.subjectPhase spaces-
dc.subjectRich structure-
dc.subjectSelf-similar-
dc.subjectChaos theory-
dc.subjectPhysics-
dc.subjectPhase space methods-
dc.titleSome dynamical properties of a classical dissipative bouncing ball model with two nonlinearitiesen
dc.typeoutro-
dc.contributor.institutionFriedrich Alexander Universität Erlangen-Nürnberg-
dc.contributor.institutionUniversity of Maribor-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstitute for Multiscale Simulation Friedrich Alexander Universität Erlangen-Nürnberg, Naegelsbachstrasse 49b, D-91052-Erlangen-
dc.description.affiliationCAMTP - Center for Applied Mathematics and Theoretical Physics University of Maribor, Krekova 2, SI-2000-Maribor-
dc.description.affiliationDepartamento de Física Universidade Estadual Paulista (UNESP), Av. 24A, 1515-13506-900-Rio Claro, SP-
dc.description.affiliationUnespDepartamento de Física Universidade Estadual Paulista (UNESP), Av. 24A, 1515-13506-900-Rio Claro, SP-
dc.identifier.doi10.1016/j.physa.2012.12.021-
dc.identifier.wosWOS:000315071100006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications-
dc.identifier.scopus2-s2.0-84873721129-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.