You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75122
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Oliveira, M.-
dc.contributor.authorMiranda, Diana Rodrigues de Pina-
dc.contributor.authorAlvarez, M.-
dc.contributor.authorVelo, A. F.-
dc.contributor.authorCavalcante, R. S.-
dc.contributor.authorYamashita, Seizo-
dc.contributor.authorMendes, Rinaldo Poncio-
dc.contributor.authorMiranda, J. R A-
dc.date.accessioned2014-05-27T11:28:55Z-
dc.date.accessioned2016-10-25T18:47:26Z-
dc.date.available2014-05-27T11:28:55Z-
dc.date.available2016-10-25T18:47:26Z-
dc.date.issued2013-04-16-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-29305-4_215-
dc.identifier.citationIFMBE Proceedings, v. 39 IFMBE, p. 819-822.-
dc.identifier.issn1680-0737-
dc.identifier.urihttp://hdl.handle.net/11449/75122-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/75122-
dc.description.abstractObtaining a semi-automatic quantification of pathologies found in the lung, through images of high resolution computed tomography (HRCT), is of great importance to aid in medical diagnosis. Paraccocidioidomycosis (PCM) is a systemic disease that affects the lung and even after effective treatment leaves sequels such as pulmonary fibrosis and emphysema. It is very important to the area of tropical diseases that the lung injury be quantified more accurately. In this stud, we propose the development of algorithms in computational environment Matlab® able to objectively quantify lung diseases such as fibrosis and emphysema. The program consists in selecting the region of interest (ROI), and through the use of density masks and filters, obtaining the lesion area quantification in relation to the healthy area of the lung. The proposed method was tested on 15 exams of HRCT of patients with confirmed PCM. To prove the validity and effectiveness of the method, we used a virtual phantom, also developed in this research. © 2013 Springer-Verlag.en
dc.format.extent819-822-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAlgorithm-
dc.subjectemphysema-
dc.subjectfibrosis-
dc.subjectHRCT-
dc.subjectparacoccidiodomycosis-
dc.subjectComputational environments-
dc.subjectHigh-resolution computed tomography-
dc.subjectPulmonary fibrosis-
dc.subjectThe region of interest (ROI)-
dc.subjectBiological organs-
dc.subjectBiomedical engineering-
dc.subjectComputerized tomography-
dc.subjectDiagnosis-
dc.subjectMATLAB-
dc.subjectPhysics-
dc.subjectAlgorithms-
dc.titleUse of algorithms for semi-automatic quantification of pulmonary fibrosis and emphysemaen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstituto de Biociências de Botucatu Departamento de Física e Biofísica Unesp, Botucatu-
dc.description.affiliationFaculdade de Medicina de Botucatu Departamento de Doenças Tropicais e Diagnóstico Por Imagem Unesp, Botucatu-
dc.description.affiliationUnespInstituto de Biociências de Botucatu Departamento de Física e Biofísica Unesp, Botucatu-
dc.description.affiliationUnespFaculdade de Medicina de Botucatu Departamento de Doenças Tropicais e Diagnóstico Por Imagem Unesp, Botucatu-
dc.identifier.doi10.1007/978-3-642-29305-4_215-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIFMBE Proceedings-
dc.identifier.scopus2-s2.0-84876051233-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.