You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75134
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodrigues-Motta, Mariana-
dc.contributor.authorPinheiro, Hildete P.-
dc.contributor.authorMartins, Eduardo G.-
dc.contributor.authorAraújo, Márcio S.-
dc.contributor.authordos Reis, Sérgio F.-
dc.date.accessioned2014-05-27T11:28:56Z-
dc.date.accessioned2016-10-25T18:47:28Z-
dc.date.available2014-05-27T11:28:56Z-
dc.date.available2016-10-25T18:47:28Z-
dc.date.issued2013-04-18-
dc.identifierhttp://dx.doi.org/10.1080/02664763.2013.789098-
dc.identifier.citationJournal of Applied Statistics, v. 40, n. 7, p. 1586-1596, 2013.-
dc.identifier.issn0266-4763-
dc.identifier.issn1360-0532-
dc.identifier.urihttp://hdl.handle.net/11449/75134-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/75134-
dc.description.abstractIn this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome. © 2013 Copyright Taylor and Francis Group, LLC.en
dc.format.extent1586-1596-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectmaximum likelihood-
dc.subjectmixed model-
dc.subjectmixture distribution-
dc.subjectmultivariate count data-
dc.subjectnegative binomial distribution-
dc.subjectoverdispersion-
dc.subjectPoisson distribution-
dc.subjectzero-inflated data-
dc.titleMultivariate models for correlated count dataen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversity of British Columbia-
dc.contributor.institutionCarleton University-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Statistics University of Campinas, Campinas, 13083-859-
dc.description.affiliationDepartment of Forest Sciences Centre for Applied Conservation Research University of British Columbia, Vancouver, V6T1Z4-
dc.description.affiliationDepartment of Biology Institute of Environmental Science Carleton University, Ottawa, K1S5B6-
dc.description.affiliationDepartamento de Ecologia Universidade Estadual Paulista, Rio Claro, 13506-900-
dc.description.affiliationDepartamento de Biologia Animal Universidade Estadual de Campinas, Campinas, 13083-862-
dc.description.affiliationUnespDepartamento de Ecologia Universidade Estadual Paulista, Rio Claro, 13506-900-
dc.identifier.doi10.1080/02664763.2013.789098-
dc.identifier.wosWOS:000320753900015-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Applied Statistics-
dc.identifier.scopus2-s2.0-84879550005-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.