You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75331
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMiranda, A. J.-
dc.contributor.authorRizziolli, E. C.-
dc.contributor.authorSala, M. J.-
dc.date.accessioned2014-05-27T11:29:05Z-
dc.date.accessioned2016-10-25T18:48:15Z-
dc.date.available2014-05-27T11:29:05Z-
dc.date.available2016-10-25T18:48:15Z-
dc.date.issued2013-05-01-
dc.identifierhttp://www.rc.unesp.br/igce/matematica/rpsilva/pre-prints/pre-prints/Pre-print_files/ECRizziolliRevised17-05-2012.pdf-
dc.identifier.citationJP Journal of Geometry and Topology, v. 13, n. 2, p. 189-222, 2013.-
dc.identifier.issn0972-415X-
dc.identifier.urihttp://hdl.handle.net/11449/75331-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/75331-
dc.description.abstractIn this article, we investigate the geometry of quasi homogeneous corank one finitely determined map germs from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. We give a complete description, in terms of the weights and degrees, of the invariants that are associated to all stable singularities which appear in the discriminant of such map germs. The first class of invariants which we study are the isolated singularities, called 0-stable singularities because they are the 0-dimensional singularities. First, we give a formula to compute the number of An points which appear in any stable deformation of a quasi homogeneous co-rank one map germ from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. To get such a formula, we apply the Hilbert's syzygy theorem to determine the graded free resolution given by the syzygy modules of the associated iterated Jacobian ideal. Then we show how to obtain the other 0-stable singularities, these isolated singularities are formed by multiple points and here we use the relation among them and the Fitting ideals of the discriminant. For n = 2, there exists only the germ of double points set and for n = 3 there are the triple points, named points A1,1,1 and the normal crossing between a germ of a cuspidal edge and a germ of a plane, named A2,1. For n = 3, there appear also the one-dimensional singularities, which are of two types: germs of cuspidal edges or germs of double points curves. For these singularities, we show how to compute the polar multiplicities and also the local Euler obstruction at the origin in terms of the weights and degrees. © 2013 Pushpa Publishing House.en
dc.format.extent189-222-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectGeometry of quasi homogeneous map germs-
dc.subjectInvariants of stable singularities-
dc.titleStable singularities of co-rank one quasi homogeneous map germs from (ℂn+1, 0) to (ℂn, 0), n = 2, 3en
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Alfenas (UNIFAL)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationDepartamento de Ciências Exatas Universidade Federal de Alfenas, Campus Alfenas, Rua Gabriel Monteiro da Silva, n: 700, 37130-000, Alfenas, M.G-
dc.description.affiliationDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista 'Júlio Mesquita Filho', Campus de Rio Claro, Caixa Postal 178, 13506-700 Rio Claro SP-
dc.description.affiliationDepartamento de Matemática Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP-
dc.description.affiliationUnespDepartamento de Matemática Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista 'Júlio Mesquita Filho', Campus de Rio Claro, Caixa Postal 178, 13506-700 Rio Claro SP-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofJP Journal of Geometry and Topology-
dc.identifier.scopus2-s2.0-84878975555-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.