Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/75661
Título: 
Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals
Autor(es): 
Instituição: 
  • Universidade Federal do Ceará (UFC)
  • Universidade de Fortaleza
  • Universidade Estadual Paulista (UNESP)
  • Universidade Do Porto
ISSN: 
0957-4174
Resumo: 
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.
Data de publicação: 
15-Jun-2013
Citação: 
Expert Systems with Applications, v. 40, n. 8, p. 3096-3105, 2013.
Duração: 
3096-3105
Palavras-chaves: 
  • Bayesian classifiers
  • Detrended fluctuation analysis and Hurst method
  • Feature extraction
  • Nickel-based alloy
  • Non-destructive inspection
  • Optimum-path forest
  • Support vector machines
  • Thermal aging
  • Bayesian classifier
  • Detrended fluctuation analysis
  • Nickel based alloy
  • Non destructive inspection
  • Optimum-path forests
  • Artificial intelligence
  • Carbides
  • Forestry
  • Microstructure
  • Nickel
  • Nickel coatings
  • Ultrasonic waves
  • Alloy
  • Coatings
Fonte: 
http://dx.doi.org/10.1016/j.eswa.2012.12.025
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/75661
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.