You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNunes, Thiago M.-
dc.contributor.authorDe Albuquerque, Victor Hugo C.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorSilva, Cleiton C.-
dc.contributor.authorNormando, Paulo G.-
dc.contributor.authorMoura, Elineudo P.-
dc.contributor.authorTavares, João Manuel R.S.-
dc.date.accessioned2014-05-27T11:29:41Z-
dc.date.accessioned2016-10-25T18:49:48Z-
dc.date.available2014-05-27T11:29:41Z-
dc.date.available2016-10-25T18:49:48Z-
dc.date.issued2013-06-15-
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2012.12.025-
dc.identifier.citationExpert Systems with Applications, v. 40, n. 8, p. 3096-3105, 2013.-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://hdl.handle.net/11449/75661-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/75661-
dc.description.abstractSecondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.en
dc.format.extent3096-3105-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBayesian classifiers-
dc.subjectDetrended fluctuation analysis and Hurst method-
dc.subjectFeature extraction-
dc.subjectNickel-based alloy-
dc.subjectNon-destructive inspection-
dc.subjectOptimum-path forest-
dc.subjectSupport vector machines-
dc.subjectThermal aging-
dc.subjectBayesian classifier-
dc.subjectDetrended fluctuation analysis-
dc.subjectNickel based alloy-
dc.subjectNon destructive inspection-
dc.subjectOptimum-path forests-
dc.subjectArtificial intelligence-
dc.subjectCarbides-
dc.subjectForestry-
dc.subjectMicrostructure-
dc.subjectNickel-
dc.subjectNickel coatings-
dc.subjectUltrasonic waves-
dc.subjectAlloy-
dc.subjectCoatings-
dc.titleAutomatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signalsen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal do Ceará (UFC)-
dc.contributor.institutionUniversidade de Fortaleza-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Do Porto-
dc.description.affiliationDepartamento de Engenharia de Teleinformática Universidade Federal Do Ceará, Fortaleza, Ceará-
dc.description.affiliationPrograma de Pós-Graduação em Informática Aplicada Universidade de Fortaleza, Fortaleza, Ceará-
dc.description.affiliationDepartamento de Ciência da Computação Universidade Estadual Paulista, Bauru, São Paulo-
dc.description.affiliationDepartamento de Engenharia Metalúrgica e de Materiais Universidade Federal Do Ceará, Fortaleza, Ceará-
dc.description.affiliationInstituto de Engenharia Mecânica e Gestão Industrial Departamento de Engenharia Mecânica Universidade Do Porto, Porto-
dc.description.affiliationUnespDepartamento de Ciência da Computação Universidade Estadual Paulista, Bauru, São Paulo-
dc.identifier.doi10.1016/j.eswa.2012.12.025-
dc.identifier.wosWOS:000316522900030-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofExpert Systems with Applications-
dc.identifier.scopus2-s2.0-84874662110-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.