You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75762
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLuz, Eduardo José Da S.-
dc.contributor.authorNunes, Thiago M.-
dc.contributor.authorDe Albuquerque, Victor Hugo C.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorMenotti, David-
dc.date.accessioned2014-05-27T11:29:48Z-
dc.date.accessioned2016-10-25T18:50:18Z-
dc.date.available2014-05-27T11:29:48Z-
dc.date.available2016-10-25T18:50:18Z-
dc.date.issued2013-07-01-
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2012.12.063-
dc.identifier.citationExpert Systems with Applications, v. 40, n. 9, p. 3561-3573, 2013.-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://hdl.handle.net/11449/75762-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/75762-
dc.description.abstractAn important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.en
dc.format.extent3561-3573-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBayesian-
dc.subjectECG classification-
dc.subjectFeature extraction-
dc.subjectMultilayer artificial neural network-
dc.subjectOptimum-path forest-
dc.subjectSupport vector machine-
dc.subjectArrhythmia classification-
dc.subjectBayesian classifier-
dc.subjectCardiac arrhythmia-
dc.subjectCardiac rhythms-
dc.subjectClassification time-
dc.subjectComputational costs-
dc.subjectEcg classifications-
dc.subjectElectrocardiogram signal-
dc.subjectEvaluation protocol-
dc.subjectFeature extraction and classification-
dc.subjectGraph-based-
dc.subjectHeart disease diagnosis-
dc.subjectHeartbeat signals-
dc.subjectMedical instrumentation-
dc.subjectMultilayer artificial neural networks-
dc.subjectOptimum-path forests-
dc.subjectPattern recognition techniques-
dc.subjectRobust performance-
dc.subjectSignal classification-
dc.subjectSVM classifiers-
dc.subjectTraining and testing-
dc.subjectDiseases-
dc.subjectExpert systems-
dc.subjectForestry-
dc.subjectMultilayers-
dc.subjectNeural networks-
dc.subjectSupport vector machines-
dc.subjectElectrocardiography-
dc.subjectExpert Systems-
dc.subjectNeural Networks-
dc.titleECG arrhythmia classification based on optimum-path foresten
dc.typeoutro-
dc.contributor.institutionComputing Department-
dc.contributor.institutionTeleinformatic Engeneering Department-
dc.contributor.institutionPost-Graduate Program in Applied Informatics-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de Ouro Preto Computing Department, 35.400-000 Ouro Preto, MG-
dc.description.affiliationUniversidade Federal Do Ceará Teleinformatic Engeneering Department, Fortaleza, CE-
dc.description.affiliationUniversidade de Fortaleza Post-Graduate Program in Applied Informatics, Fortaleza, CE-
dc.description.affiliationUniversidade Estadual Paulista Computer Science Department, Bauru, SP-
dc.description.affiliationUnespUniversidade Estadual Paulista Computer Science Department, Bauru, SP-
dc.identifier.doi10.1016/j.eswa.2012.12.063-
dc.identifier.wosWOS:000316581300023-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofExpert Systems with Applications-
dc.identifier.scopus2-s2.0-84874665471-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.