You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75788
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoala, Fernando A.-
dc.contributor.authorGarcia, Lívia M.-
dc.date.accessioned2014-05-27T11:29:49Z-
dc.date.accessioned2016-10-25T18:50:22Z-
dc.date.available2014-05-27T11:29:49Z-
dc.date.available2016-10-25T18:50:22Z-
dc.date.issued2013-07-01-
dc.identifierhttp://dx.doi.org/10.1080/08982112.2013.764431-
dc.identifier.citationQuality Engineering, v. 25, n. 3, p. 282-291, 2013.-
dc.identifier.issn0898-2112-
dc.identifier.issn1532-4222-
dc.identifier.urihttp://hdl.handle.net/11449/75788-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/75788-
dc.description.abstractThe exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC.en
dc.format.extent282-291-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBayesian-
dc.subjectexponential-logarithmic distribution-
dc.subjectJeffreys-
dc.subjectMCMC-
dc.subjectnoninformative prior-
dc.subjectposterior-
dc.subjectNon-informative prior-
dc.subjectMaximum likelihood estimation-
dc.subjectBayesian networks-
dc.titleA bayesian analysis for the parameters of the exponential-logarithmic distributionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900-
dc.description.affiliationUnespDepartament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900-
dc.identifier.doi10.1080/08982112.2013.764431-
dc.identifier.wosWOS:000320223400008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofQuality Engineering-
dc.identifier.scopus2-s2.0-84879121469-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.