Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/75788
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Moala, Fernando A. | - |
dc.contributor.author | Garcia, Lívia M. | - |
dc.date.accessioned | 2014-05-27T11:29:49Z | - |
dc.date.accessioned | 2016-10-25T18:50:22Z | - |
dc.date.available | 2014-05-27T11:29:49Z | - |
dc.date.available | 2016-10-25T18:50:22Z | - |
dc.date.issued | 2013-07-01 | - |
dc.identifier | http://dx.doi.org/10.1080/08982112.2013.764431 | - |
dc.identifier.citation | Quality Engineering, v. 25, n. 3, p. 282-291, 2013. | - |
dc.identifier.issn | 0898-2112 | - |
dc.identifier.issn | 1532-4222 | - |
dc.identifier.uri | http://hdl.handle.net/11449/75788 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/75788 | - |
dc.description.abstract | The exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC. | en |
dc.format.extent | 282-291 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Bayesian | - |
dc.subject | exponential-logarithmic distribution | - |
dc.subject | Jeffreys | - |
dc.subject | MCMC | - |
dc.subject | noninformative prior | - |
dc.subject | posterior | - |
dc.subject | Non-informative prior | - |
dc.subject | Maximum likelihood estimation | - |
dc.subject | Bayesian networks | - |
dc.title | A bayesian analysis for the parameters of the exponential-logarithmic distribution | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Departament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900 | - |
dc.description.affiliationUnesp | Departament of Statistics Faculty of Science and Technology Sao Paulo State University, Roberto Simonsen-305, Presidente Prudente, Sao Paulo 19060-900 | - |
dc.identifier.doi | 10.1080/08982112.2013.764431 | - |
dc.identifier.wos | WOS:000320223400008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Quality Engineering | - |
dc.identifier.scopus | 2-s2.0-84879121469 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.