Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/76252
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorDe Oliveira, Domingos Lucas Latorre-
dc.contributor.authorDo Nascimento, Marcelo Zanchetta-
dc.contributor.authorNeves, Leandro Alves-
dc.contributor.authorDe Godoy, Moacir Fernandes-
dc.contributor.authorDe Arruda, Pedro Francisco Ferraz-
dc.contributor.authorDe Santi Neto, Dalisio-
dc.date.accessioned2014-05-27T11:30:09Z-
dc.date.accessioned2016-10-25T18:52:34Z-
dc.date.available2014-05-27T11:30:09Z-
dc.date.available2016-10-25T18:52:34Z-
dc.date.issued2013-08-12-
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2013.06.079-
dc.identifier.citationExpert Systems with Applications, v. 40, n. 18, p. 7331-7340, 2013.-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://hdl.handle.net/11449/76252-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76252-
dc.description.abstractThis paper presents a novel segmentation method for cuboidal cell nuclei in images of prostate tissue stained with hematoxylin and eosin. The proposed method allows segmenting normal, hyperplastic and cancerous prostate images in three steps: pre-processing, segmentation of cuboidal cell nuclei and post-processing. The pre-processing step consists of applying contrast stretching to the red (R) channel to highlight the contrast of cuboidal cell nuclei. The aim of the second step is to apply global thresholding based on minimum cross entropy to generate a binary image with candidate regions for cuboidal cell nuclei. In the post-processing step, false positives are removed using the connected component method. The proposed segmentation method was applied to an image bank with 105 samples and measures of sensitivity, specificity and accuracy were compared with those provided by other segmentation approaches available in the specialized literature. The results are promising and demonstrate that the proposed method allows the segmentation of cuboidal cell nuclei with a mean accuracy of 97%. © 2013 Elsevier Ltd. All rights reserved.en
dc.format.extent7331-7340-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectMinimum cross entropy-
dc.subjectProstate cancer-
dc.subjectSegmentation of cuboidal cells-
dc.subjectSegmentation of nuclei-
dc.subjectConnected component-
dc.subjectContrast stretching-
dc.subjectGlobal thresholding-
dc.subjectPre-processing step-
dc.subjectProstate cancers-
dc.subjectSegmentation methods-
dc.subjectUnsupervised segmentation method-
dc.subjectEntropy-
dc.subjectImage segmentation-
dc.titleUnsupervised segmentation method for cuboidal cell nuclei in histological prostate images based on minimum cross entropyen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal do ABC (UFABC)-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionFaculdade de Medicina de São José do Rio Preto (FAMERP)-
dc.contributor.institutionRegional Medical Faculty Foundation (FUNFARME)-
dc.description.affiliationCenter of Mathematics Computing and Cognition Federal University of ABC (UFABC), Santo André, SP-
dc.description.affiliationFaculty of Computing (FACOM) Federal University of Uberlândia (UFU), Uberlândia, MG-
dc.description.affiliationInstitute of Biosciences Letters and Science Department of Computer Science and Statistics São Paulo State University (UNESP), São José do Rio Preto, SP-
dc.description.affiliationInterdisciplinary Center for the Study of Chaos and Complexity (NUTTECC) Faculty of Medicine of São José Do Rio Preto (FAMERP), São José do Rio Preto, SP-
dc.description.affiliationSurgery Department of Renal Transplantation Regional Medical Faculty Foundation (FUNFARME), São José do Rio Preto, SP-
dc.description.affiliationDepartment of Pathology of Base Hospital Regional Medical Faculty Foundation (FUNFARME), São José do Rio Preto, SP-
dc.description.affiliationUnespInstitute of Biosciences Letters and Science Department of Computer Science and Statistics São Paulo State University (UNESP), São José do Rio Preto, SP-
dc.identifier.doi10.1016/j.eswa.2013.06.079-
dc.identifier.wosWOS:000324663000018-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofExpert Systems with Applications-
dc.identifier.scopus2-s2.0-84881181456-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.