You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/76352
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNakamura, Rodrigo Yuji Mizobe-
dc.contributor.authorPereira, Luís Augusto Martins-
dc.contributor.authorRodrigues, Douglas-
dc.contributor.authorCosta, Kelton Augusto Pontara-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorYang, Xin-She-
dc.date.accessioned2014-05-27T11:30:30Z-
dc.date.accessioned2016-10-25T18:53:01Z-
dc.date.available2014-05-27T11:30:30Z-
dc.date.available2016-10-25T18:53:01Z-
dc.date.issued2013-08-29-
dc.identifierhttp://dx.doi.org/10.1016/B978-0-12-405163-8.00009-0-
dc.identifier.citationSwarm Intelligence and Bio-Inspired Computation, p. 225-237.-
dc.identifier.urihttp://hdl.handle.net/11449/76352-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76352-
dc.description.abstractFeature selection aims to find the most important information to save computational efforts and data storage. We formulated this task as a combinatorial optimization problem since the exponential growth of possible solutions makes an exhaustive search infeasible. In this work, we propose a new nature-inspired feature selection technique based on bats behavior, namely, binary bat algorithm The wrapper approach combines the power of exploration of the bats together with the speed of the optimum-path forest classifier to find a better data representation. Experiments in public datasets have shown that the proposed technique can indeed improve the effectiveness of the optimum-path forest and outperform some well-known swarm-based techniques. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.en
dc.format.extent225-237-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectBat algorithm-
dc.subjectFeature selection-
dc.subjectMetaheuristic algorithms-
dc.subjectOptimum-path forest classifier-
dc.subjectPattern classification-
dc.titleBinary Bat Algorithm for Feature Selectionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionMiddlesex University-
dc.description.affiliationDepartment of Computing São Paulo State University, Bauru-
dc.description.affiliationDepartment of Design Engineering and Mathematics School of Science and Technology Middlesex University, The Burroughs, London-
dc.description.affiliationUnespDepartment of Computing São Paulo State University, Bauru-
dc.identifier.doi10.1016/B978-0-12-405163-8.00009-0-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofSwarm Intelligence and Bio-Inspired Computation-
dc.identifier.scopus2-s2.0-84883929298-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.