You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/76408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCosta, M. S.-
dc.contributor.authorFelix, H. M.-
dc.contributor.authorSri Ranga, A.-
dc.date.accessioned2014-05-27T11:30:32Z-
dc.date.accessioned2016-10-25T18:53:09Z-
dc.date.available2014-05-27T11:30:32Z-
dc.date.available2016-10-25T18:53:09Z-
dc.date.issued2013-09-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2013.04.009-
dc.identifier.citationJournal of Approximation Theory, v. 173, p. 14-32.-
dc.identifier.issn0021-9045-
dc.identifier.issn1096-0430-
dc.identifier.urihttp://hdl.handle.net/11449/76408-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76408-
dc.description.abstractSzego{double acute} has shown that real orthogonal polynomials on the unit circle can be mapped to orthogonal polynomials on the interval [-1,1] by the transformation 2x=z+z-1. In the 80's and 90's Delsarte and Genin showed that real orthogonal polynomials on the unit circle can be mapped to symmetric orthogonal polynomials on the interval [-1,1] using the transformation 2x=z1/2+z-1/2. We extend the results of Delsarte and Genin to all orthogonal polynomials on the unit circle. The transformation maps to functions on [-1,1] that can be seen as extensions of symmetric orthogonal polynomials on [-1,1] satisfying a three-term recurrence formula with real coefficients {cn} and {dn}, where {dn} is also a positive chain sequence. Via the results established, we obtain a characterization for a point w(|w|=1) to be a pure point of the measure involved. We also give a characterization for orthogonal polynomials on the unit circle in terms of the two sequences {cn} and {dn}. © 2013 Elsevier Inc.en
dc.format.extent14-32-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectChain sequences-
dc.subjectOrthogonal polynomials on the unit circle-
dc.subjectPure points of a measure-
dc.titleOrthogonal polynomials on the unit circle and chain sequencesen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationFaculdade de Matemática Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG-
dc.description.affiliationUNICAMP, 13083-859, Campinas, SP-
dc.description.affiliationDepartamento de Matemática Aplicada IBILCE UNESP - Universidade Estadual Paulista, 15054-000, São José do Rio Preto, SP-
dc.description.affiliationUnespDepartamento de Matemática Aplicada IBILCE UNESP - Universidade Estadual Paulista, 15054-000, São José do Rio Preto, SP-
dc.identifier.doi10.1016/j.jat.2013.04.009-
dc.identifier.wosWOS:000322291500002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Approximation Theory-
dc.identifier.scopus2-s2.0-84878199408-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.