Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/76408
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Costa, M. S. | - |
dc.contributor.author | Felix, H. M. | - |
dc.contributor.author | Sri Ranga, A. | - |
dc.date.accessioned | 2014-05-27T11:30:32Z | - |
dc.date.accessioned | 2016-10-25T18:53:09Z | - |
dc.date.available | 2014-05-27T11:30:32Z | - |
dc.date.available | 2016-10-25T18:53:09Z | - |
dc.date.issued | 2013-09-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.jat.2013.04.009 | - |
dc.identifier.citation | Journal of Approximation Theory, v. 173, p. 14-32. | - |
dc.identifier.issn | 0021-9045 | - |
dc.identifier.issn | 1096-0430 | - |
dc.identifier.uri | http://hdl.handle.net/11449/76408 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/76408 | - |
dc.description.abstract | Szego{double acute} has shown that real orthogonal polynomials on the unit circle can be mapped to orthogonal polynomials on the interval [-1,1] by the transformation 2x=z+z-1. In the 80's and 90's Delsarte and Genin showed that real orthogonal polynomials on the unit circle can be mapped to symmetric orthogonal polynomials on the interval [-1,1] using the transformation 2x=z1/2+z-1/2. We extend the results of Delsarte and Genin to all orthogonal polynomials on the unit circle. The transformation maps to functions on [-1,1] that can be seen as extensions of symmetric orthogonal polynomials on [-1,1] satisfying a three-term recurrence formula with real coefficients {cn} and {dn}, where {dn} is also a positive chain sequence. Via the results established, we obtain a characterization for a point w(|w|=1) to be a pure point of the measure involved. We also give a characterization for orthogonal polynomials on the unit circle in terms of the two sequences {cn} and {dn}. © 2013 Elsevier Inc. | en |
dc.format.extent | 14-32 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Chain sequences | - |
dc.subject | Orthogonal polynomials on the unit circle | - |
dc.subject | Pure points of a measure | - |
dc.title | Orthogonal polynomials on the unit circle and chain sequences | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Faculdade de Matemática Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG | - |
dc.description.affiliation | UNICAMP, 13083-859, Campinas, SP | - |
dc.description.affiliation | Departamento de Matemática Aplicada IBILCE UNESP - Universidade Estadual Paulista, 15054-000, São José do Rio Preto, SP | - |
dc.description.affiliationUnesp | Departamento de Matemática Aplicada IBILCE UNESP - Universidade Estadual Paulista, 15054-000, São José do Rio Preto, SP | - |
dc.identifier.doi | 10.1016/j.jat.2013.04.009 | - |
dc.identifier.wos | WOS:000322291500002 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Approximation Theory | - |
dc.identifier.scopus | 2-s2.0-84878199408 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.