You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/76564
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSartin, Maicon A.-
dc.contributor.authorDa Silva, Alexandre C.R.-
dc.date.accessioned2014-05-27T11:30:41Z-
dc.date.accessioned2016-10-25T18:54:09Z-
dc.date.available2014-05-27T11:30:41Z-
dc.date.available2016-10-25T18:54:09Z-
dc.date.issued2013-09-16-
dc.identifierhttp://dx.doi.org/10.1109/ReCoSoC.2013.6581545-
dc.identifier.citation2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013.-
dc.identifier.urihttp://hdl.handle.net/11449/76564-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76564-
dc.description.abstractArtificial Neural Networks are widely used in various applications in engineering, as such solutions of nonlinear problems. The implementation of this technique in reconfigurable devices is a great challenge to researchers by several factors, such as floating point precision, nonlinear activation function, performance and area used in FPGA. The contribution of this work is the approximation of a nonlinear function used in ANN, the popular hyperbolic tangent activation function. The system architecture is composed of several scenarios that provide a tradeoff of performance, precision and area used in FPGA. The results are compared in different scenarios and with current literature on error analysis, area and system performance. © 2013 IEEE.en
dc.language.isoeng-
dc.sourceScopus-
dc.subjectactivation function-
dc.subjectFPGA-
dc.subjectHybrid Methods-
dc.subjecthyperbolic tangent-
dc.subjectActivation functions-
dc.subjectHybrid method-
dc.subjectHyperbolic tangent-
dc.subjectNonlinear activation functions-
dc.subjectNonlinear functions-
dc.subjectNonlinear problems-
dc.subjectReconfigurable devices-
dc.subjectSystem architectures-
dc.subjectCommunication-
dc.subjectField programmable gate arrays (FPGA)-
dc.subjectHyperbolic functions-
dc.subjectNeural networks-
dc.subjectReconfigurable hardware-
dc.titleApproximation of hyperbolic tangent activation function using hybrid methodsen
dc.typeoutro-
dc.contributor.institutionUniversidade do Estado de Mato Grosso (UNEMAT)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Computing UNEMAT - Universidade Do Estado de Mato Grosso, Colider, MT-
dc.description.affiliationDepartment of Electrical Engineering UNESP - Universidade Estadual Paulista, Ilha Solteira, SP-
dc.description.affiliationUnespDepartment of Electrical Engineering UNESP - Universidade Estadual Paulista, Ilha Solteira, SP-
dc.identifier.doi10.1109/ReCoSoC.2013.6581545-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC 2013-
dc.identifier.scopus2-s2.0-84883659156-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.