You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/76572
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastillo, Kenier-
dc.contributor.authorGarza, Lino G.-
dc.contributor.authorMarcellán, Francisco-
dc.date.accessioned2014-05-27T11:30:42Z-
dc.date.accessioned2016-10-25T18:54:10Z-
dc.date.available2014-05-27T11:30:42Z-
dc.date.available2016-10-25T18:54:10Z-
dc.date.issued2013-09-17-
dc.identifierhttp://dx.doi.org/10.1016/j.amc.2013.08.030-
dc.identifier.citationApplied Mathematics and Computation, v. 223, p. 452-460.-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://hdl.handle.net/11449/76572-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76572-
dc.description.abstractIn this paper, we show how to compute in O(n2) steps the Fourier coefficients associated with the Gelfand-Levitan approach for discrete Sobolev orthogonal polynomials on the unit circle when the support of the discrete component involving derivatives is located outside the closed unit disk. As a consequence, we deduce the outer relative asymptotics of these polynomials in terms of those associated with the original orthogonality measure. Moreover, we show how to recover the discrete part of our Sobolev inner product. © 2013 Elsevier Inc. All rights reserved.en
dc.format.extent452-460-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectCholesky decomposition-
dc.subjectComputational complexity-
dc.subjectDiscrete Sobolev inner product-
dc.subjectGelfand-Levitan approach-
dc.subjectOuter relative asymptotics-
dc.subjectAsymptotics-
dc.subjectComputational aspects-
dc.subjectDiscrete components-
dc.subjectFourier coefficients-
dc.subjectSobolev inner products-
dc.subjectSobolev orthogonal polynomials-
dc.subjectComputational methods-
dc.subjectMathematical techniques-
dc.subjectFourier analysis-
dc.titleOn computational aspects of discrete Sobolev inner products on the unit circleen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidad Carlos III-
dc.description.affiliationDepartamento de Matemática Aplicada UNESP Universidade Estadual Paulista, 15054-00 São José do Rio Preto, SP-
dc.description.affiliationDepartamento de Matemáticas Escuela Politécnica Superior Universidad Carlos III, Leganés-Madrid-
dc.description.affiliationUnespDepartamento de Matemática Aplicada UNESP Universidade Estadual Paulista, 15054-00 São José do Rio Preto, SP-
dc.identifier.doi10.1016/j.amc.2013.08.030-
dc.identifier.wosWOS:000326941900041-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Mathematics and Computation-
dc.identifier.scopus2-s2.0-84883781978-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.