Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/76646
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nakamura, Rodrigo | - |
dc.contributor.author | Osaku, Daniel | - |
dc.contributor.author | Levada, Alexandre | - |
dc.contributor.author | Cappabianco, Fabio | - |
dc.contributor.author | Falcão, Alexandre | - |
dc.contributor.author | Papa, Joao | - |
dc.date.accessioned | 2014-05-27T11:30:45Z | - |
dc.date.accessioned | 2016-10-25T18:54:28Z | - |
dc.date.available | 2014-05-27T11:30:45Z | - |
dc.date.available | 2016-10-25T18:54:28Z | - |
dc.date.issued | 2013-09-26 | - |
dc.identifier | http://dx.doi.org/10.1007/978-3-642-40246-3_29 | - |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8048 LNCS, n. PART 2, p. 233-240, 2013. | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.uri | http://hdl.handle.net/11449/76646 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/76646 | - |
dc.description.abstract | Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag. | en |
dc.format.extent | 233-240 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Contextual Classification | - |
dc.subject | Markov Random Fields | - |
dc.subject | Optimum-Path Forest | - |
dc.title | OPF-MRF: Optimum-path forest and Markov random fields for contextual-based image classification | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | - |
dc.contributor.institution | Universidade Federal de São Paulo (UNIFESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | UNESP - Univ. Estadual Paulista Department of Computing, Bauru-SP | - |
dc.description.affiliation | Department of Computing Federal University of São Carlos | - |
dc.description.affiliation | Institute of Science and Technology Federal University of São Paulo | - |
dc.description.affiliation | Institute of Computing University of Campinas | - |
dc.description.affiliationUnesp | UNESP - Univ. Estadual Paulista Department of Computing, Bauru-SP | - |
dc.identifier.doi | 10.1007/978-3-642-40246-3_29 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
dc.identifier.scopus | 2-s2.0-84884474442 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.