You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/76647
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodrigues, Douglas-
dc.contributor.authorPereira, Luis A. M.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorRamos, Caio C. O.-
dc.contributor.authorSouza, Andre N.-
dc.contributor.authorPapa, Luciene P.-
dc.date.accessioned2014-05-27T11:30:45Z-
dc.date.accessioned2016-10-25T18:54:28Z-
dc.date.available2014-05-27T11:30:45Z-
dc.date.available2016-10-25T18:54:28Z-
dc.date.issued2013-09-26-
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-40261-6_45-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8047 LNCS, n. PART 1, p. 377-384, 2013.-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/11449/76647-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76647-
dc.description.abstractFeature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. © 2013 Springer-Verlag.en
dc.format.extent377-384-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectCharged System Search-
dc.subjectEvolutionary Optimization-
dc.subjectFeature Felection-
dc.subjectCharged system searches-
dc.subjectEvolutionary optimizations-
dc.subjectOptimization problems-
dc.subjectOptimum-path forests-
dc.subjectSelection techniques-
dc.subjectWrapper approach-
dc.subjectImage analysis-
dc.subjectOptimization-
dc.titleOptimizing feature selection through binary charged system searchen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionFaculdade Sudoeste Paulista-
dc.description.affiliationUNESP - Univ. Estadual Paulista Department of Computing, Bauru-
dc.description.affiliationUNESP - Univ. Estadual Paulista Depart. of Electrical Engineering, Bauru-
dc.description.affiliationUniversity of São Paulo Polytechnic School, São Paulo-
dc.description.affiliationFaculdade Sudoeste Paulista Department of Health, Avaré-
dc.description.affiliationUnespUNESP - Univ. Estadual Paulista Department of Computing, Bauru-
dc.description.affiliationUnespUNESP - Univ. Estadual Paulista Depart. of Electrical Engineering, Bauru-
dc.identifier.doi10.1007/978-3-642-40261-6_45-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
dc.identifier.scopus2-s2.0-84884491505-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.