You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/76712
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Rodrigo O.A.-
dc.contributor.authorValandro, Luiz F.-
dc.contributor.authorMelo, Renata M.-
dc.contributor.authorMachado, João P.B.-
dc.contributor.authorBottino, Marco A.-
dc.contributor.authorÖzcan, Mutlu-
dc.date.accessioned2014-05-27T11:30:46Z-
dc.date.accessioned2016-10-25T18:54:37Z-
dc.date.available2014-05-27T11:30:46Z-
dc.date.available2016-10-25T18:54:37Z-
dc.date.issued2013-10-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jmbbm.2013.04.018-
dc.identifier.citationJournal of the Mechanical Behavior of Biomedical Materials, v. 26, p. 155-163.-
dc.identifier.issn1751-6161-
dc.identifier.issn1878-0180-
dc.identifier.urihttp://hdl.handle.net/11449/76712-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76712-
dc.description.abstractThis study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.en
dc.format.extent155-163-
dc.language.isoeng-
dc.sourceScopus-
dc.subjectAir-abrasion-
dc.subjectBiaxial flexural strength-
dc.subjectSilica coating-
dc.subjectY-TZP-
dc.subjectZirconia-
dc.subjectAir abrasion-
dc.subjectBi-axial flexural strength-
dc.subjectDifferent protocols-
dc.subjectMonoclinic zirconia-
dc.subjectSilica coatings-
dc.subjectStructural stabilities-
dc.subjectSurface roughness (Ra)-
dc.subjectAbrasion-
dc.subjectAluminum-
dc.subjectBending strength-
dc.subjectCeramic materials-
dc.subjectCyclic loads-
dc.subjectPhase transitions-
dc.subjectSintering-
dc.subjectStability-
dc.subjectSurface roughness-
dc.subjectTribology-
dc.subjectbiomedical and dental materials-
dc.subjectdental ceramics-
dc.subjectwater-
dc.subjectzirconium oxide-
dc.subjectair particle abrasion-
dc.subjectanalytical parameters-
dc.subjectbiaxial flexural strength-
dc.subjectcontrolled study-
dc.subjectloading test-
dc.subjectmaterials testing-
dc.subjectmechanical stress-
dc.subjectparticle size-
dc.subjectpressure-
dc.subjectpriority journal-
dc.subjectRaman spectrometry-
dc.subjectscanning electron microscopy-
dc.subjectsurface property-
dc.subjectX ray diffraction-
dc.titleAir-particle abrasion on zirconia ceramic using different protocols: Effects on biaxial flexural strength after cyclic loading, phase transformation and surface topographyen
dc.typeoutro-
dc.contributor.institutionFederal University of Paraíba-
dc.contributor.institutionFederal University of Santa Maria-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionNational Institute of Spatial Research-
dc.contributor.institutionUniversity of Zürich-
dc.description.affiliationDepartment of Restorative Dentistry Division of Prosthodontics Federal University of Paraíba, 9216 Praia de Guajirú Avenue, 59092-220 Natal, Rio Grande do Norte-
dc.description.affiliationDepartment of Restorative Dentistry Division of Prosthodontics Federal University of Santa Maria, 1184 Marechal Floriano Street, 97015-372 Santa Maria, Rio Grande do Sul-
dc.description.affiliationDepartment of Dental Materials and Prosthodontics São José dos Campos Dental School São Paulo State University, 777 Enginer Francisco José Longo Avenue, 12245-000 São José dos Campos, Sao Paulo-
dc.description.affiliationNational Institute of Spatial Research, 1758 Astronautas Avenue, 12227-010 São José dos Campos, Sao Paulo-
dc.description.affiliationDental Materials Unit Center for Dental and Oral Medicine Clinic for Fixed and Removable Prosthodontics University of Zürich, Plattenstrasse 11, CH-8032 Zurich-
dc.description.affiliationUnespDepartment of Dental Materials and Prosthodontics São José dos Campos Dental School São Paulo State University, 777 Enginer Francisco José Longo Avenue, 12245-000 São José dos Campos, Sao Paulo-
dc.identifier.doi10.1016/j.jmbbm.2013.04.018-
dc.identifier.wosWOS:000322929900017-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of the Mechanical Behavior of Biomedical Materials-
dc.identifier.scopus2-s2.0-84880040742-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.