You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/76865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLamas Samanamud, Gisella R.-
dc.contributor.authorIzario Filho, Helcio J.-
dc.contributor.authorLoures, Carla C. A.-
dc.contributor.authorOliveira, Ivy S.-
dc.contributor.authorSouza, Andre L.-
dc.contributor.authorDe Freitas, Ana Paula B. R.-
dc.contributor.authorPei, Ruoting-
dc.date.accessioned2014-05-27T11:30:51Z-
dc.date.accessioned2016-10-25T18:55:01Z-
dc.date.available2014-05-27T11:30:51Z-
dc.date.available2016-10-25T18:55:01Z-
dc.date.issued2013-10-16-
dc.identifierhttp://dx.doi.org/10.1155/2013/393467-
dc.identifier.citationInternational Journal of Chemical Engineering.-
dc.identifier.issn1687-806X-
dc.identifier.issn1687-8078-
dc.identifier.urihttp://hdl.handle.net/11449/76865-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/76865-
dc.description.abstractAn Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.en
dc.language.isoeng-
dc.sourceScopus-
dc.titleThe application of a surface response methodology in the solar/UV-induced degradation of dairy wastewater using immobilized ZnO as a semiconductoren
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversity of Texas at San Antonio (UTSA)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDepartment of Chemical Engineering Engineering School of Lorena University of Sao Paulo (USP), Estrada Municipal do Campinho, s/no, Bairro do Campinho, 126020-810 Lorena, SP-
dc.description.affiliationDepartment of Civil and Environmental Engineering University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX 78249-
dc.description.affiliationDepartament of Production Engineering Sao Paulo State University (UNESP), 12516-410 Guaratingueta, SP-
dc.description.affiliationUnespDepartament of Production Engineering Sao Paulo State University (UNESP), 12516-410 Guaratingueta, SP-
dc.identifier.doi10.1155/2013/393467-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-84885364744.pdf-
dc.relation.ispartofInternational Journal of Chemical Engineering-
dc.identifier.scopus2-s2.0-84885364744-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.