Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/8274
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Souza, Andre N. | - |
dc.contributor.author | da Costa, Pedro | - |
dc.contributor.author | da Silva, Paulo S. | - |
dc.contributor.author | Ramos, Caio C. O. | - |
dc.contributor.author | Papa, Joao P. | - |
dc.date.accessioned | 2014-05-20T13:25:56Z | - |
dc.date.accessioned | 2016-10-25T16:46:11Z | - |
dc.date.available | 2014-05-20T13:25:56Z | - |
dc.date.available | 2016-10-25T16:46:11Z | - |
dc.date.issued | 2012-01-01 | - |
dc.identifier | http://dx.doi.org/10.1080/08839514.2012.674289 | - |
dc.identifier.citation | Applied Artificial Intelligence. Philadelphia: Taylor & Francis Inc, v. 26, n. 5, p. 503-515, 2012. | - |
dc.identifier.issn | 0883-9514 | - |
dc.identifier.uri | http://hdl.handle.net/11449/8274 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/8274 | - |
dc.description.abstract | In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.format.extent | 503-515 | - |
dc.language.iso | eng | - |
dc.publisher | Taylor & Francis Inc | - |
dc.source | Web of Science | - |
dc.title | EFFICIENT FAULT LOCATION IN UNDERGROUND DISTRIBUTION SYSTEMS THROUGH OPTIMUM-PATH FOREST | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ São Paulo, Dept Elect Engn, São Paulo, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Dept Elect Engn, Bauru, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Dept Comp, Bauru, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Elect Engn, Bauru, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Comp, Bauru, Brazil | - |
dc.description.sponsorshipId | FAPESP: 10/12398-0 | - |
dc.description.sponsorshipId | FAPESP: 09/16206-1 | - |
dc.description.sponsorshipId | CNPq: 303182/2011-3 | - |
dc.identifier.doi | 10.1080/08839514.2012.674289 | - |
dc.identifier.wos | WOS:000303887700004 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Applied Artificial Intelligence | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.