You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8274
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Andre N.-
dc.contributor.authorda Costa, Pedro-
dc.contributor.authorda Silva, Paulo S.-
dc.contributor.authorRamos, Caio C. O.-
dc.contributor.authorPapa, Joao P.-
dc.date.accessioned2014-05-20T13:25:56Z-
dc.date.accessioned2016-10-25T16:46:11Z-
dc.date.available2014-05-20T13:25:56Z-
dc.date.available2016-10-25T16:46:11Z-
dc.date.issued2012-01-01-
dc.identifierhttp://dx.doi.org/10.1080/08839514.2012.674289-
dc.identifier.citationApplied Artificial Intelligence. Philadelphia: Taylor & Francis Inc, v. 26, n. 5, p. 503-515, 2012.-
dc.identifier.issn0883-9514-
dc.identifier.urihttp://hdl.handle.net/11449/8274-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8274-
dc.description.abstractIn this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent503-515-
dc.language.isoeng-
dc.publisherTaylor & Francis Inc-
dc.sourceWeb of Science-
dc.titleEFFICIENT FAULT LOCATION IN UNDERGROUND DISTRIBUTION SYSTEMS THROUGH OPTIMUM-PATH FORESTen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, Dept Elect Engn, São Paulo, Brazil-
dc.description.affiliationSão Paulo State Univ, Dept Elect Engn, Bauru, Brazil-
dc.description.affiliationSão Paulo State Univ, Dept Comp, Bauru, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, Dept Elect Engn, Bauru, Brazil-
dc.description.affiliationUnespSão Paulo State Univ, Dept Comp, Bauru, Brazil-
dc.description.sponsorshipIdFAPESP: 10/12398-0-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.description.sponsorshipIdCNPq: 303182/2011-3-
dc.identifier.doi10.1080/08839514.2012.674289-
dc.identifier.wosWOS:000303887700004-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Artificial Intelligence-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.