Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/8284
Título: 
Efficient supervised optimum-path forest classification for large datasets
Autor(es): 
Instituição: 
  • Univ Porto
  • Universidade Estadual Paulista (UNESP)
  • Universidade Estadual de Campinas (UNICAMP)
  • Univ Fortaleza
ISSN: 
0031-3203
Financiador: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP)
Número do financiamento: 
  • FAPESP: 09/16206-1
  • FAPESP: 07/52015-0
  • CNPq: 481556/2009-5
  • CNPq: 303673/2010-91
  • FUNCAP: 35.0053/2011.1
Resumo: 
Today data acquisition technologies come up with large datasets with millions of samples for statistical analysis. This creates a tremendous challenge for pattern recognition techniques, which need to be more efficient without losing their effectiveness. We have tried to circumvent the problem by reducing it into the fast computation of an optimum-path forest (OPF) in a graph derived from the training samples. In this forest, each class may be represented by multiple trees rooted at some representative samples. The forest is a classifier that assigns to a new sample the label of its most strongly connected root. The methodology has been successfully used with different graph topologies and learning techniques. In this work, we have focused on one of the supervised approaches, which has offered considerable advantages over Support Vector Machines and Artificial Neural Networks to handle large datasets. We propose (i) a new algorithm that speeds up classification and (ii) a solution to reduce the training set size with negligible effects on the accuracy of classification, therefore further increasing its efficiency. Experimental results show the improvements with respect to our previous approach and advantages over other existing methods, which make the new method a valuable contribution for large dataset analysis. (C) 2011 Elsevier Ltd. All rights reserved.
Data de publicação: 
1-Jan-2012
Citação: 
Pattern Recognition. Oxford: Elsevier B.V., v. 45, n. 1, p. 512-520, 2012.
Duração: 
512-520
Publicador: 
Elsevier B.V.
Palavras-chaves: 
  • Optimum-path forest classifiers
  • Support vector machines
  • Artificial neural networks
  • Pattern recognition
  • Machine learning
Fonte: 
http://dx.doi.org/10.1016/j.patcog.2011.07.013
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/8284
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.