You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorFalcao, Alexandre X.-
dc.contributor.authorde Albuquerque, Victor Hugo C.-
dc.contributor.authorTavares, Joao Manuel R. S.-
dc.date.accessioned2014-05-20T13:25:57Z-
dc.date.accessioned2016-10-25T16:46:12Z-
dc.date.available2014-05-20T13:25:57Z-
dc.date.available2016-10-25T16:46:12Z-
dc.date.issued2012-01-01-
dc.identifierhttp://dx.doi.org/10.1016/j.patcog.2011.07.013-
dc.identifier.citationPattern Recognition. Oxford: Elsevier B.V., v. 45, n. 1, p. 512-520, 2012.-
dc.identifier.issn0031-3203-
dc.identifier.urihttp://hdl.handle.net/11449/8284-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8284-
dc.description.abstractToday data acquisition technologies come up with large datasets with millions of samples for statistical analysis. This creates a tremendous challenge for pattern recognition techniques, which need to be more efficient without losing their effectiveness. We have tried to circumvent the problem by reducing it into the fast computation of an optimum-path forest (OPF) in a graph derived from the training samples. In this forest, each class may be represented by multiple trees rooted at some representative samples. The forest is a classifier that assigns to a new sample the label of its most strongly connected root. The methodology has been successfully used with different graph topologies and learning techniques. In this work, we have focused on one of the supervised approaches, which has offered considerable advantages over Support Vector Machines and Artificial Neural Networks to handle large datasets. We propose (i) a new algorithm that speeds up classification and (ii) a solution to reduce the training set size with negligible effects on the accuracy of classification, therefore further increasing its efficiency. Experimental results show the improvements with respect to our previous approach and advantages over other existing methods, which make the new method a valuable contribution for large dataset analysis. (C) 2011 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP)-
dc.format.extent512-520-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectOptimum-path forest classifiersen
dc.subjectSupport vector machinesen
dc.subjectArtificial neural networksen
dc.subjectPattern recognitionen
dc.subjectMachine learningen
dc.titleEfficient supervised optimum-path forest classification for large datasetsen
dc.typeoutro-
dc.contributor.institutionUniv Porto-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniv Fortaleza-
dc.description.affiliationUniv Porto, Fac Egenharia, P-4100 Oporto, Portugal-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, Brazil-
dc.description.affiliationUniv Fortaleza, Ctr Ciencias Tecnol, Fortaleza, Ceara, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.description.sponsorshipIdFAPESP: 07/52015-0-
dc.description.sponsorshipIdCNPq: 481556/2009-5-
dc.description.sponsorshipIdCNPq: 303673/2010-91-
dc.description.sponsorshipIdFUNCAP: 35.0053/2011.1-
dc.identifier.doi10.1016/j.patcog.2011.07.013-
dc.identifier.wosWOS:000295760700042-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPattern Recognition-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.