Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/8295
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rocha, Anderson | - |
dc.contributor.author | Papa, João Paulo | - |
dc.contributor.author | Meira, Luis A. A. | - |
dc.date.accessioned | 2014-05-20T13:25:58Z | - |
dc.date.accessioned | 2016-10-25T16:46:13Z | - |
dc.date.available | 2014-05-20T13:25:58Z | - |
dc.date.available | 2016-10-25T16:46:13Z | - |
dc.date.issued | 2012-03-01 | - |
dc.identifier | http://dx.doi.org/10.1142/S0218001412610010 | - |
dc.identifier.citation | International Journal of Pattern Recognition and Artificial Intelligence. Singapore: World Scientific Publ Co Pte Ltd, v. 26, n. 2, p. 23, 2012. | - |
dc.identifier.issn | 0218-0014 | - |
dc.identifier.uri | http://hdl.handle.net/11449/8295 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/8295 | - |
dc.description.abstract | With several good research groups actively working in machine learning (ML) approaches, we have now the concept of self-containing machine learning solutions that oftentimes work out-of-the-box leading to the concept of ML black-boxes. Although it is important to have such black-boxes helping researchers to deal with several problems nowadays, it comes with an inherent problem increasingly more evident: we have observed that researchers and students are progressively relying on ML black-boxes and, usually, achieving results without knowing the machinery of the classifiers. In this regard, this paper discusses the use of machine learning black-boxes and poses the question of how far we can get using these out-of-the-box solutions instead of going deeper into the machinery of the classifiers. The paper focuses on three aspects of classifiers: (1) the way they compare examples in the feature space; (2) the impact of using features with variable dimensionality; and (3) the impact of using binary classifiers to solve a multi-class problem. We show how knowledge about the classifier's machinery can improve the results way beyond out-of-the-box machine learning solutions. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | University of Campinas PAPDIC Grant | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Microsoft Research | - |
dc.format.extent | 23 | - |
dc.language.iso | eng | - |
dc.publisher | World Scientific Publ Co Pte Ltd | - |
dc.source | Web of Science | - |
dc.subject | Machine learning black-boxes | en |
dc.subject | binary to multi-class classifiers | en |
dc.subject | support vector machines | en |
dc.subject | optimum-path forest | en |
dc.subject | visual words | en |
dc.subject | K-nearest neighbors | en |
dc.title | HOW FAR do WE GET USING MACHINE LEARNING BLACK-BOXES? | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP, Brazil | - |
dc.description.affiliation | UNESP Univ Estadual Paulista, Dept Comp Sci, BR-17033360 Bauru, SP, Brazil | - |
dc.description.affiliation | Univ Campinas UNICAMP, Fac Technol, BR-13484332 Limeira, SP, Brazil | - |
dc.description.affiliationUnesp | UNESP Univ Estadual Paulista, Dept Comp Sci, BR-17033360 Bauru, SP, Brazil | - |
dc.description.sponsorshipId | FAPESP: 09/16206-1 | - |
dc.description.sponsorshipId | FAPESP: 10/05647-4 | - |
dc.description.sponsorshipId | University of Campinas PAPDIC Grant: 519.292-340/10 | - |
dc.identifier.doi | 10.1142/S0218001412610010 | - |
dc.identifier.wos | WOS:000308104300007 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | International Journal of Pattern Recognition and Artificial Intelligence | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.