Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/8301
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chiachia, Giovani | - |
dc.contributor.author | Marana, Aparecido Nilceu | - |
dc.contributor.author | Ruf, Tobias | - |
dc.contributor.author | Ernst, Andreas | - |
dc.date.accessioned | 2014-05-20T13:25:58Z | - |
dc.date.accessioned | 2016-10-25T16:46:13Z | - |
dc.date.available | 2014-05-20T13:25:58Z | - |
dc.date.available | 2016-10-25T16:46:13Z | - |
dc.date.issued | 2011-12-01 | - |
dc.identifier | http://dx.doi.org/10.1142/S0218001411009068 | - |
dc.identifier.citation | International Journal of Pattern Recognition and Artificial Intelligence. Singapore: World Scientific Publ Co Pte Ltd, v. 25, n. 8, p. 1337-1348, 2011. | - |
dc.identifier.issn | 0218-0014 | - |
dc.identifier.uri | http://hdl.handle.net/11449/8301 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/8301 | - |
dc.description.abstract | Most face recognition approaches require a prior training where a given distribution of faces is assumed to further predict the identity of test faces. Such an approach may experience difficulty in identifying faces belonging to distributions different from the one provided during the training. A face recognition technique that performs well regardless of training is, therefore, interesting to consider as a basis of more sophisticated methods. In this work, the Census Transform is applied to describe the faces. Based on a scanning window which extracts local histograms of Census Features, we present a method that directly matches face samples. With this simple technique, 97.2% of the faces in the FERET fa/fb test were correctly recognized. Despite being an easy test set, we have found no other approaches in literature regarding straight comparisons of faces with such a performance. Also, a window for further improvement is presented. Among other techniques, we demonstrate how the use of SVMs over the Census Histogram representation can increase the recognition performance. | en |
dc.format.extent | 1337-1348 | - |
dc.language.iso | eng | - |
dc.publisher | World Scientific Publ Co Pte Ltd | - |
dc.source | Web of Science | - |
dc.subject | Face recognition | en |
dc.subject | census transform | en |
dc.subject | local binary patterns | en |
dc.subject | histogram matching | en |
dc.subject | feature extraction | en |
dc.title | CENSUS HISTOGRAMS: A SIMPLE FEATURE EXTRACTION and MATCHING APPROACH FOR FACE RECOGNITION | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Fraunhofer Inst Integrated Circuits IIS | - |
dc.description.affiliation | São Paulo State Univ, Dept Comp, BR-17033360 São Paulo, Brazil | - |
dc.description.affiliation | Fraunhofer Inst Integrated Circuits IIS, Elect Imaging Dept, D-91058 Erlangen, Germany | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Comp, BR-17033360 São Paulo, Brazil | - |
dc.identifier.doi | 10.1142/S0218001411009068 | - |
dc.identifier.wos | WOS:000298813200010 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | International Journal of Pattern Recognition and Artificial Intelligence | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.