Utilize este identificador para citar ou criar um link para este item:
http://acervodigital.unesp.br/handle/11449/8303
Registro de metadados completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Oba Ramos, Caio Cesar | - |
dc.contributor.author | de Sousa, Andra Nunes | - |
dc.contributor.author | Papa, João Paulo | - |
dc.contributor.author | Falcao, Alexandre Xavier | - |
dc.date.accessioned | 2014-05-20T13:25:59Z | - |
dc.date.accessioned | 2016-10-25T16:46:13Z | - |
dc.date.available | 2014-05-20T13:25:59Z | - |
dc.date.available | 2016-10-25T16:46:13Z | - |
dc.date.issued | 2011-02-01 | - |
dc.identifier | http://dx.doi.org/10.1109/TPWRS.2010.2051823 | - |
dc.identifier.citation | IEEE Transactions on Power Systems. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 1, p. 181-189, 2011. | - |
dc.identifier.issn | 0885-8950 | - |
dc.identifier.uri | http://hdl.handle.net/11449/8303 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/8303 | - |
dc.description.abstract | Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification. | en |
dc.format.extent | 181-189 | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.source | Web of Science | - |
dc.subject | Nontechnical losses | en |
dc.subject | optimum-path forest | en |
dc.subject | pattern recognition | en |
dc.title | A New Approach for Nontechnical Losses Detection Based on Optimum-Path Forest | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | São Paulo State Univ, Dept Elect Engn, Intelligent Tech & Power Syst Lab, São Paulo, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Dept Comp, São Paulo, Brazil | - |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, São Paulo, Brazil | - |
dc.description.affiliation | São Paulo State Univ, Dept Comp Sci, São Paulo, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Elect Engn, Intelligent Tech & Power Syst Lab, São Paulo, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Comp, São Paulo, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ, Dept Comp Sci, São Paulo, Brazil | - |
dc.identifier.doi | 10.1109/TPWRS.2010.2051823 | - |
dc.identifier.wos | WOS:000286516100021 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | IEEE Transactions on Power Systems | - |
Aparece nas coleções: | Artigos, TCCs, Teses e Dissertações da Unesp |
Não há nenhum arquivo associado com este item.
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.