Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/8305
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oba Ramos, Caio Cesar | - |
dc.contributor.author | de Souza, Andre Nunes | - |
dc.contributor.author | Falcao, Alexandre Xavier | - |
dc.contributor.author | Papa, João Paulo | - |
dc.date.accessioned | 2014-05-20T13:25:59Z | - |
dc.date.accessioned | 2016-10-25T16:46:14Z | - |
dc.date.available | 2014-05-20T13:25:59Z | - |
dc.date.available | 2016-10-25T16:46:14Z | - |
dc.date.issued | 2012-01-01 | - |
dc.identifier | http://dx.doi.org/10.1109/TPWRD.2011.2170182 | - |
dc.identifier.citation | IEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 27, n. 1, p. 140-146, 2012. | - |
dc.identifier.issn | 0885-8977 | - |
dc.identifier.uri | http://hdl.handle.net/11449/8305 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/8305 | - |
dc.description.abstract | Although nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 140-146 | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.source | Web of Science | - |
dc.subject | Feature selection | en |
dc.subject | gravitational search algorithm | en |
dc.subject | harmony search | en |
dc.subject | nontechnical losses | en |
dc.subject | optimum-path forest | en |
dc.subject | particle swarm optimization | en |
dc.subject | pattern recognition | en |
dc.title | New Insights on Nontechnical Losses Characterization Through Evolutionary-Based Feature Selection | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ São Paulo, Dept Elect Engn, BR-05508970 São Paulo, Brazil | - |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, BR-13083852 São Paulo, Brazil | - |
dc.description.affiliation | UNESP Univ Estadual Paulista, Dept Comp, BR-17033360 São Paulo, Brazil | - |
dc.description.affiliationUnesp | UNESP Univ Estadual Paulista, Dept Comp, BR-17033360 São Paulo, Brazil | - |
dc.description.sponsorshipId | FAPESP: 09/16206-1 | - |
dc.identifier.doi | 10.1109/TPWRD.2011.2170182 | - |
dc.identifier.wos | WOS:000298380600016 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | IEEE Transactions on Power Delivery | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.