Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/8305
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorOba Ramos, Caio Cesar-
dc.contributor.authorde Souza, Andre Nunes-
dc.contributor.authorFalcao, Alexandre Xavier-
dc.contributor.authorPapa, João Paulo-
dc.date.accessioned2014-05-20T13:25:59Z-
dc.date.accessioned2016-10-25T16:46:14Z-
dc.date.available2014-05-20T13:25:59Z-
dc.date.available2016-10-25T16:46:14Z-
dc.date.issued2012-01-01-
dc.identifierhttp://dx.doi.org/10.1109/TPWRD.2011.2170182-
dc.identifier.citationIEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 27, n. 1, p. 140-146, 2012.-
dc.identifier.issn0885-8977-
dc.identifier.urihttp://hdl.handle.net/11449/8305-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8305-
dc.description.abstractAlthough nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent140-146-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectFeature selectionen
dc.subjectgravitational search algorithmen
dc.subjectharmony searchen
dc.subjectnontechnical lossesen
dc.subjectoptimum-path foresten
dc.subjectparticle swarm optimizationen
dc.subjectpattern recognitionen
dc.titleNew Insights on Nontechnical Losses Characterization Through Evolutionary-Based Feature Selectionen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, Dept Elect Engn, BR-05508970 São Paulo, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 São Paulo, Brazil-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, BR-17033360 São Paulo, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, BR-17033360 São Paulo, Brazil-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.identifier.doi10.1109/TPWRD.2011.2170182-
dc.identifier.wosWOS:000298380600016-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Power Delivery-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.