You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8305
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOba Ramos, Caio Cesar-
dc.contributor.authorde Souza, Andre Nunes-
dc.contributor.authorFalcao, Alexandre Xavier-
dc.contributor.authorPapa, João Paulo-
dc.date.accessioned2014-05-20T13:25:59Z-
dc.date.accessioned2016-10-25T16:46:14Z-
dc.date.available2014-05-20T13:25:59Z-
dc.date.available2016-10-25T16:46:14Z-
dc.date.issued2012-01-01-
dc.identifierhttp://dx.doi.org/10.1109/TPWRD.2011.2170182-
dc.identifier.citationIEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 27, n. 1, p. 140-146, 2012.-
dc.identifier.issn0885-8977-
dc.identifier.urihttp://hdl.handle.net/11449/8305-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8305-
dc.description.abstractAlthough nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent140-146-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectFeature selectionen
dc.subjectgravitational search algorithmen
dc.subjectharmony searchen
dc.subjectnontechnical lossesen
dc.subjectoptimum-path foresten
dc.subjectparticle swarm optimizationen
dc.subjectpattern recognitionen
dc.titleNew Insights on Nontechnical Losses Characterization Through Evolutionary-Based Feature Selectionen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, Dept Elect Engn, BR-05508970 São Paulo, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 São Paulo, Brazil-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, BR-17033360 São Paulo, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, BR-17033360 São Paulo, Brazil-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.identifier.doi10.1109/TPWRD.2011.2170182-
dc.identifier.wosWOS:000298380600016-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Power Delivery-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.