You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastro, Fernando A.-
dc.contributor.authorBenmansour, Hadjar-
dc.contributor.authorMoser, Jacques-E-
dc.contributor.authorGraeff, Carlos Frederico de Oliveira-
dc.contributor.authorNueesch, Frank-
dc.contributor.authorHany, Roland-
dc.date.accessioned2014-05-20T13:26:19Z-
dc.date.accessioned2016-10-25T16:46:30Z-
dc.date.available2014-05-20T13:26:19Z-
dc.date.available2016-10-25T16:46:30Z-
dc.date.issued2009-01-01-
dc.identifierhttp://dx.doi.org/10.1039/b909512h-
dc.identifier.citationPhysical Chemistry Chemical Physics. Cambridge: Royal Soc Chemistry, v. 11, n. 39, p. 8886-8894, 2009.-
dc.identifier.issn1463-9076-
dc.identifier.urihttp://hdl.handle.net/11449/8462-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8462-
dc.description.abstractPower-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.en
dc.format.extent8886-8894-
dc.language.isoeng-
dc.publisherRoyal Soc Chemistry-
dc.sourceWeb of Science-
dc.titlePhotoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yielden
dc.typeoutro-
dc.contributor.institutionLab Funct Polymers-
dc.contributor.institutionEcole Polytech Fed Lausanne-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationLab Funct Polymers, Swiss Fed Labs Mat Testing & Res, CH-8600 Dubendorf, Switzerland-
dc.description.affiliationEcole Polytech Fed Lausanne, Inst Chem Sci & Engn, Photochem Dynam Grp, CH-1015 Lausanne, Switzerland-
dc.description.affiliationUNESP, FC, Dept Fis, BR-17033360 Bauru, Brazil-
dc.description.affiliationUnespUNESP, FC, Dept Fis, BR-17033360 Bauru, Brazil-
dc.identifier.doi10.1039/b909512h-
dc.identifier.wosWOS:000270319600029-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysical Chemistry Chemical Physics-
dc.identifier.orcid0000-0003-0162-8273pt
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.