You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCardin, Pedro Toniol-
dc.contributor.authorDe Carvalho, Tiago-
dc.contributor.authorLlibre, Jaume-
dc.date.accessioned2014-05-20T13:26:36Z-
dc.date.accessioned2016-10-25T16:46:46Z-
dc.date.available2014-05-20T13:26:36Z-
dc.date.available2016-10-25T16:46:46Z-
dc.date.issued2011-11-01-
dc.identifierhttp://dx.doi.org/10.1142/S0218127411030441-
dc.identifier.citationInternational Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 21, n. 11, p. 3181-3194, 2011.-
dc.identifier.issn0218-1274-
dc.identifier.urihttp://hdl.handle.net/11449/8604-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/8604-
dc.description.abstractWe study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in R(n) perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipMICIIN-
dc.description.sponsorshipGeneralitat of Catalonia-
dc.description.sponsorshipICREA Academia-
dc.format.extent3181-3194-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectDiscontinuous piecewise linear differential systemsen
dc.subjectLimit cyclesen
dc.subjectaveraging theoryen
dc.titleLIMIT CYCLES of DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMSen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Autonoma Barcelona-
dc.description.affiliationIBILCE UNESP, Dept Matemat, BR-15054000 São Paulo, Brazil-
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain-
dc.description.affiliationUnespIBILCE UNESP, Dept Matemat, BR-15054000 São Paulo, Brazil-
dc.description.sponsorshipIdFAPESP: 07/07957-8-
dc.description.sponsorshipIdFAPESP: 07/08707-5-
dc.description.sponsorshipIdMICIIN: MTM2008-03437-
dc.description.sponsorshipIdGeneralitat of Catalonia: SGR2009-410-
dc.identifier.doi10.1142/S0218127411030441-
dc.identifier.wosWOS:000298815900007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Bifurcation and Chaos-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.