You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/87051
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTeixeira, Marcelo Carvalho Minhoto [UNESP]-
dc.contributor.authorFreitas, Luciana Paro Scarin-
dc.date.accessioned2014-06-11T19:22:31Z-
dc.date.accessioned2016-10-25T18:56:49Z-
dc.date.available2014-06-11T19:22:31Z-
dc.date.available2016-10-25T18:56:49Z-
dc.date.issued2011-12-02-
dc.identifier.citationFREITAS, Luciana Paro Scarin. Discriminação entre pacientes normais e hemiplégicos utilizando plataforma de força e redes neurais. 2011. 83 f. Dissertação (mestrado) – Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira., 2011.-
dc.identifier.urihttp://hdl.handle.net/11449/87051-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/87051-
dc.description.abstractNeste trabalho descreve-se o desenvolvimento de duas redes neurais que identificam e classificam dados da distribuição do peso corporal na região plantar de pessoas normais e hemiplégicas. Esses dados são experimentais e foram obtidos através da utilização de uma plataforma de força contendo 48 sensores. As arquiteturas utilizadas para esta aplicação foram as redes neurais MLP (Multilayer Perceptron) com o algoritmo retropropagação (backpropagation), e ARTMAP Nebulosa. A escolha de tais arquiteturas se deve ao treinamento (supervisionado) o qual associa de forma direta a distribuição de força plantar com os respectivos pacientes (normais e hemiplégicos). Ambas as arquiteturas, MLP e ARTMAP Nebulosa, conseguiram fazer a discriminação entre quase todas as pessoas normais e hemiplégicos. A rede neural ARTMAP Nebulosa possui a vantagem de efetuar a classificação de forma rápida e eficiente. Esta aplicação é importante nas áreas de Podologia, Posturologia e Podoposturologia, pois propicia ao profissional de saúde uma nova metodologia de diagnósticopt
dc.description.abstractThis work describes the development of two neural networks that identify and classify data distribution of plantar body weight of normal or hemiplegic individuals. The architectures used for this application were, respectively, MLP neural networks (Multilayer Perceptron) with backpropagation algorithm, and Fuzzy ARTMAP. The choice of such architectures was due to the training (supervised training) which directly associates the distribution of plantar force with the patients (normal or hemiplegic). The input data used for training and diagnosis of the neural networks were obtained from a force plate, with 48 sensors, containing measurements of the weight distribution on the plantar region (right and left) of normal or hemiplegic patients. Both architectures, MLP and Fuzzy ARTMAP, were able to discriminate almost all normal and hemiplegic patients. The Fuzzy ARTMAP neural network was more efficient than MLP neural network in the classification of the patients. This application is important in areas of Podiatry, Posturology and Podoposturology because it can help the health care professionalsen
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent83 f. : il.-
dc.language.isopor-
dc.publisherUniversidade Estadual Paulista (UNESP)-
dc.sourceAleph-
dc.subjectRedes neurais MLPpt
dc.subjectMLP Neural networken
dc.titleDiscriminação entre pacientes normais e hemiplégicos utilizando plataforma de força e redes neuraispt
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.rights.accessRightsAcesso aberto-
dc.identifier.filefreitas_lps_me_ilha.pdf-
dc.identifier.aleph000685575-
dc.identifier.capes33004099080P0-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.