You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8886
Full metadata record
DC FieldValueLanguage
dc.contributor.authorda Silva, I. N.-
dc.contributor.authorde Souza, A. N.-
dc.contributor.authorBordon, M. E.-
dc.date.accessioned2014-05-20T13:27:12Z-
dc.date.available2014-05-20T13:27:12Z-
dc.date.issued2000-01-01-
dc.identifierhttps://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763-
dc.identifier.citationControl Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000.-
dc.identifier.urihttp://hdl.handle.net/11449/8886-
dc.description.abstractSystems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.en
dc.format.extent317-322-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectparameter identificationpt
dc.subjectneural networkspt
dc.subjectrobust estimationpt
dc.subjectartificial intelligencept
dc.subjectestimation algorithmspt
dc.titleA neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errorsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, UNESP,FE,DEE, Sch Engn, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUnespUniv São Paulo, UNESP,FE,DEE, Sch Engn, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil-
dc.identifier.wosWOS:000169941000057-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofControl Applications of Optimization 2000, Vols 1 and 2-
dc.identifier.orcid0000-0001-8510-8245pt
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.