You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/8904
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUlson, Jose Alfredo Covolan-
dc.contributor.authorBenez, S. H.-
dc.contributor.authorda Silva, I. N.-
dc.contributor.authorde Souza, A. N.-
dc.date.accessioned2014-05-20T13:27:14Z-
dc.date.available2014-05-20T13:27:14Z-
dc.date.issued2001-01-01-
dc.identifierhttp://dx.doi.org/10.1109/IJCNN.2001.938488-
dc.identifier.citationIjcnn'01: International Joint Conference on Neural Networks, Vols 1-4, Proceedings. New York: IEEE, p. 2088-2092, 2001.-
dc.identifier.issn1098-7576-
dc.identifier.urihttp://hdl.handle.net/11449/8904-
dc.description.abstractThe accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.en
dc.format.extent2088-2092-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.titleNitrogen content identification in crop plants using spectral reflectance and artificial neural networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv São Paulo, UNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil-
dc.description.affiliationUnespUniv São Paulo, UNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil-
dc.identifier.doi10.1109/IJCNN.2001.938488-
dc.identifier.wosWOS:000172784800371-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIjcnn'01: International Joint Conference on Neural Networks, Vols 1-4, Proceedings-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.